Skip to main content
Log in

Neurophysiologic markers of primary motor cortex for laryngeal muscles and premotor cortex in caudal opercular part of inferior frontal gyrus investigated in motor speech disorder: a navigated transcranial magnetic stimulation (TMS) study

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Transcranial magnetic stimulation studies have so far reported the results of mapping the primary motor cortex (M1) for hand and tongue muscles in stuttering disorder. This study was designed to evaluate the feasibility of repetitive navigated transcranial magnetic stimulation (rTMS) for locating the M1 for laryngeal muscle and premotor cortical area in the caudal opercular part of inferior frontal gyrus, corresponding to Broca’s area in stuttering subjects by applying new methodology for mapping these motor speech areas. Sixteen stuttering and eleven control subjects underwent rTMS motor speech mapping using modified patterned rTMS. The subjects performed visual object naming task during rTMS applied to the (a) left M1 for laryngeal muscles for recording corticobulbar motor-evoked potentials (CoMEP) from cricothyroid muscle and (b) left premotor cortical area in the caudal opercular part of inferior frontal gyrus while recording long latency responses (LLR) from cricothyroid muscle. The latency of CoMEP in control subjects was 11.75 ± 2.07 ms and CoMEP amplitude was 294.47 ± 208.87 µV, and in stuttering subjects CoMEP latency was 12.13 ± 0.75 ms and 504.64 ± 487.93 µV CoMEP amplitude. The latency of LLR in control subjects was 52.8 ± 8.6 ms and 54.95 ± 4.86 in stuttering subjects. No significant differences were found in CoMEP latency, CoMEP amplitude, and LLR latency between stuttering and control-fluent speakers. These results indicate there are probably no differences in stuttering compared to controls in functional anatomy of the pathway used for transmission of information from premotor cortex to the M1 cortices for laryngeal muscle representation and from there via corticobulbar tract to laryngeal muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alm PA, Karlsson R, Sundberg M, Axelson HW (2013) Hemispheric lateralization of motor thresholds in relation to stuttering. PLoS One 8:e76824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amassian VE, Anziska BJ, Cracco JB, Cracco RQ, Maccabee PJ (1988) Focal magnetic excitation of frontal cortex activates laryngeal muscles in man. J Physiol (Lond) 398:41P

    Google Scholar 

  • Barbas H, García-Cabezas MÁ, Zikopoulos B (2013) Frontal–thalamic circuits associated with language. Brain Lang 126:49–61

    Article  PubMed  Google Scholar 

  • Beal DS, Lerch JP, Cameron B, Henderson R, Gracco VL, De Nil LF (2015) The trajectory of gray matter development in Broca’s area is abnormal in people who stutter. Front Hum Neurosci 9:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Bickford RG (1966) Human “microreflexes” revealed by computer analysis. Neurology 16:302

    Google Scholar 

  • Bickford RG, Jacobson JL, Cody DTR (1964) Nature of average evoked potentials to sound and other stimuli in man. Ann N Y Acad Sci 112:204–218

    Article  CAS  PubMed  Google Scholar 

  • Braun AR, Varga M, Stager S, Schulz G, Selbie S, Maisoq JM et al (1997) Altered patterns of cerebral activity during speech and language production in developmental stuttering: an H2 150 positron emission tomography study. Brain 120:761–784

    Article  PubMed  Google Scholar 

  • Brodal P (2010) The central nervous system: structure and function, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Brodeur MB, Dionne-Dostie E, Montreuil T, Lepage M (2010) The BOSS, a new set of 538 normalized photos of objects to be used as ecological stimuli in vision and memory paradigms. PLoS One 5:e10773

    Article  PubMed  PubMed Central  Google Scholar 

  • Busan P, Battaglini PP, Borelli M, Evaristo P, Monti F, Pelamatti G (2009) Investigating the efficacy of paroxetine in developmental stuttering. Clin Neuropharmacol 32:183–188

    Article  CAS  PubMed  Google Scholar 

  • Busan P, D’Ausilio A, Borelli M, Monti F, Pelamatti G, Pizzolato G et al (2013) Motor excitability evaluation in developmental stuttering: a transcranial magnetic stimulation study. Cortex 49:781–792

    Article  PubMed  Google Scholar 

  • Cai S, Tourville JA, Beal DS, Perkell JS, Guenther FH, Ghosh SS (2014) Diffusion imaging of cerebral white matter in persons who stutter: evidence for network-level anomalies. Front Hum Neursci 8:54

    Google Scholar 

  • Chang SE, Zhu DC (2013) Neural network connectivity differences in children who stutter. Brain 136:3709–3726

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang SE, Erickson KI, Ambrose NG, Hasegawa-Johnson MA, Ludlow CL (2008) Brain anatomy differences in childhood stuttering. Neuroimage 39:1333–1344

    Article  PubMed  Google Scholar 

  • Chang SE, Horwitz B, Ostuni J, Reynolds R, Ludlow CL (2011) Evidence of left inferior frontal–premotor structural and functional connectivity deficit sin adults who stutter. Cereb Cortex 21:2507–2518

    Article  PubMed  PubMed Central  Google Scholar 

  • Civier O, Bullock D, Max L, Guenther FH (2013) Computational modeling of stuttering caused by impairments in a basal ganglia thalamo-cortical circuit involved in syllable selection and initiation. Brain Lang 126:263–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Cvetković M, Poljak D (2015) Comparison of a TMS induced fields in homogeneous adult and child brain models using the surface integral equation approach. In: The proceedings of ICEAA: IEEE APWC 2015. pp 199–202. doi:10.1109/ICEAA.2015.7297103

  • Cvetković M, Poljak D, Haueisen J (2015) Analysis of transcranial magnetic stimulation based on the surface integral equation formulation. IEEE Trans Biomed Eng 62(6):1535–1545. doi:10.1109/TBME.2015.2393557 (Epub 2015 Jan 16)

    Article  PubMed  Google Scholar 

  • Cykowski MD, Fox PT, Ingham RJ, Ingham JC, Robin DA (2010) A study of the reproducibility and etiology of diffusion anisotropy differences in developmental stuttering: a potential role for impaired myelination. Neuroimage 52:1495–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darley FL, Aronson AE, Brown JR (1975) Motor speech disorders. Saunders Company, Toronto

    Google Scholar 

  • Deletis V, Fernández-Conejero I, Ulkatan S, Rogić M, Carbó EL, Hiltzik D (2011) Methodology for intraoperative recording of the corticobulbar motor evoked potentials from cricothyroid muscles. Clin Neurophysiol 122:1883–1889

    Article  PubMed  Google Scholar 

  • Deletis V, Rogić M, Fernández-Conejero I, Gabarrós A, Jerončić A (2014) Neurophysiologic markers in laryngeal muscles indicate functional anatomy of laryngeal primary motor cortex and premotor cortex in the caudal opercular part of inferior frontal gyrus. Clin Neurophysiol 125:1912–1922

    Article  PubMed  Google Scholar 

  • Devlin JT, Watkins KE (2008) Investigating language organization with TMS. In: Wassermann EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The Oxford handbook of transcranial stimulation. University Press, Oxford, pp 479–499

    Google Scholar 

  • Dick AS, Bernal B, Tremblay P (2014) The language connectome: new pathways, new concepts. Neuroscientist 20:453–467

    Article  PubMed  Google Scholar 

  • Ertekin C, Turman B, Tarlaci S, Celik M, Aydogdu I, Secil Y et al (2001) Cricopharyngeal sphincter muscle responses to transcranial magnetic stimulation in normal subjects and in patients with dysphagia. Clin Neurophysiol 112:86–94

    Article  CAS  PubMed  Google Scholar 

  • Espadaler J, Rogić M, Deletis V, Leon A, Quijada C, Conesa G (2012) Representation of cricothyroid muscles at the primary motor cortex (M1) in healthy subjects, mapped by navigated transcranial magnetic stimulation (nTMS). Clin Neurophysiol 123:2205–2211

    Article  PubMed  Google Scholar 

  • Fibiger S (1971) Stuttering explained as a physiological tremor. Speech Transm Lab Q Prog Status Rep 2–3:1–24

    Google Scholar 

  • Flinker A, Korzeniewska A, Shestyuk AY, Franaszczuk PJ, Dronkers NF, Knight RT et al (2015) Redefining the role of Broca’s area in speech. Proc Natl Acad Sci USA 112:2871–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foundas AL, Bollich AM, Corey DM, Hurley M, Heilman KM (2001) Anomalous anatomy of speech–language areas in adults with persistent developmental stuttering. Neurology 57:207–215

    Article  CAS  PubMed  Google Scholar 

  • Foundas AL, Mock JR, Cindass R Jr, Corey DM (2013) Atypical caudate anatomy in children who stutter. Percept Mot Skills 116:528–543

    Article  PubMed  Google Scholar 

  • Fox PT, Ingham RJ, Ingham JC, Hirsch TB, Downs JH, Martin C et al (1996) A PET study of the neural systems of stuttering. Nature 382:158–161

    Article  CAS  PubMed  Google Scholar 

  • Friederici AD (2015) White-matter pathways for speech and language processing. Handb Clin Neurol 120:177–186

    Article  Google Scholar 

  • Giraud AL, Neumann K, Bachoud-Levi AC, von Gudenberg AW, Euler HA, Lanfermann H et al (2008) Severity of dysfluency correlates with basal ganglia activity in persistent developmental stuttering. Brain Lang 104:190–199

    Article  PubMed  Google Scholar 

  • Greenlee JD, Oya H, Kawasaki H, Volkov IO, Kaufman OP, Kovach C, Howard MA et al (2004) A functional connection between inferior frontal gyrus and orofacial motor cortex in human. J Neurophysiol 92:1153–1164

    Article  PubMed  Google Scholar 

  • Hirano M, Ohala J (1969) Use of hooked-wire electrodes for electromyography of the intrinsic laryngeal muscles. J Speech Hear Res 12:362–373

    Article  CAS  PubMed  Google Scholar 

  • Holstege G, Subramanian HH (2015) Two motor systems are needed to generate human speech. J Comp Neurol. doi:10.1002/cne.23898 (Epub ahead of print)

    Google Scholar 

  • Jansson-Verkasalo E, Eggers K, Järvenpää A, Suominen K, Van den Bergh B, De Nil L et al (2014) Atypical central auditory speech–sound discrimination in children who stutter as indexed by the mismatch negativity. J Fluen Disord 41:1–11

    Article  Google Scholar 

  • Julkunen P, Ruohonen J, Sääskilahti S, Säisänen L, Karhu J (2011) Threshold curves for transcranial magnetic stimulation to improve reliability of motor pathway status assessment. Clin Neurophysiol 122:975–983

    Article  PubMed  Google Scholar 

  • Kelly EM, Smith A, Goffman L (1995) Orofacial muscle activity of children who stutter: a preliminary study. J Speech Hear Res 38:1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Kemerdere R, de Champfleur NM, Deverdun J, Cochereau J, Moritz-Gasser S, Herbet G et al (2016) Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study. J Neurol 263:157–167

    Article  PubMed  Google Scholar 

  • Khedr EM, Aref EE (2002) Electrophysiological study of vocal-fold mobility disorders using a magnetic stimulator. Eur J Neurol 9:259–267

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Ogata K, Umesaki T, Yoshiura T, Kenjo M, Hirano Y et al (2011) Spatiotemporal signatures of an abnormal auditory system in stuttering. Neuroimage 55:891–899

    Article  PubMed  Google Scholar 

  • Kraft SJ, Yairi E (2012) Genetic bases of stuttering: the state of the art, 2011. Folia Phoniatr Logop 64:34–47

    Article  PubMed  Google Scholar 

  • Krieg SM, Sollmann N, Tanigawa N, Foerschler A, Meyer B, Ringel F (2015) Cortical distribution of speech and language errors investigated by visual object naming and navigated transcranial magnetic stimulation. Brain Struct Funct 1–28. doi:10.1007/s00429-015-1042-7 (Epub ahead of print)

  • Liotti M, Ingham J, Takai O, Kothmann Paskos D, Perez R, Ingham R (2010) Spatiotemporal dynamics of speech sound perception in chronic developmental stuttering. Brain Lang 115:141–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Lioumis P, Zhdanov A, Mäkelä N, Lehtinen H, Wilenius J, Neuvonen T et al (2012) A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. J Neurosci Methods 204:349–354

    Article  PubMed  Google Scholar 

  • Lu C, Chen C, Ning N, Ding G, Guo T, Peng D et al (2010) The neural substrates for atypical planning and execution of word production in stuttering. Exp Neurol 221:146–156

    Article  PubMed  Google Scholar 

  • Lu C, Chen C, Peng D, You W, Zhang X, Ding G et al (2012) Neural anomaly and reorganization in speakers who stutter: a short-term intervention study. Neurology 79:625–632

    Article  PubMed  Google Scholar 

  • Ludlow CL (2005) Central nervous system control of the laryngeal muscles in humans. Respir Physiol Neurobiol 147:205–222

    Article  PubMed  PubMed Central  Google Scholar 

  • McClean M, Goldsmith H, Cerf A (1984) Lower-lip EMG and displacement during bilabial disfluencies in adult stutterers. J Speech Hear Res 27:342–349

    Article  CAS  PubMed  Google Scholar 

  • Mulligan HF, Anderson TJ, Jones RD, Williams MJ, Donaldson IM (2003) Tics and developmental stuttering. Parkinsonism Relat Disord 9:281–289

    Article  PubMed  Google Scholar 

  • Neef NE, Paulus W, Neef A, von Gudenberg AW, Sommer M (2011) Reduced intracortical inhibition and facilitation in the primary motor tongue representation of adult who stutter. Clin Neurophysiol 122:1802–1811

    Article  CAS  PubMed  Google Scholar 

  • Neef NE, Hoang TN, Neef A, Paulus W, Sommer M (2015) Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter. Brain 138(Pt 3):712–725. doi:10.1093/brain/awu390 (Epub 2015 Jan 15)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ojemann G (1992) Localization of language in frontal cortex. Adv Neurol 57:361–368

    CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Penfield W, Roberts L (1959) Speech and brain mechanisms. Princeton University Press, Princeton

    Google Scholar 

  • Picht T, Krieg SM, Sollmann N, Rösler J, Niraula B, Neuvonen T et al (2013) A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery 72:808–819

    Article  PubMed  Google Scholar 

  • Preibisch C, Neumann K, Raab P, Euler HA, von Gudenberg AW, Lanfermann H et al (2003) Evidence for compensation for stuttering by the right frontal operculum. Neuroimage 20:1356–1364

    Article  PubMed  Google Scholar 

  • Riley GD (1994) Stuttering severity instrument for children and adults (SSI-3), 3rd edn. Pro-Ed, Austin

    Google Scholar 

  • Riva-Posse P, Busto-Marolt L, Schteinschnaider A, Martinez-Echenique L, Cammarota A, Merello M (2008) Phenomenology of abnormal movements in stuttering. Parkinsonism Relat Disord 14:415–449

    Article  PubMed  Google Scholar 

  • Rödel RMV, Olthoff A, Tergau F, Simonyan K, Kraemer D, Markus H et al (2004) Human cortical motor representation of larynx as assessed by transcranial magnetic stimulation (TMS). Laryngoscope 114:918–922

    Article  PubMed  Google Scholar 

  • Rogić Vidaković M, Schönwald MZ, Rotim K, Jurić T, Vulević Z, Tafra R et al (2015) Excitability of contralateral and ipsilateral projections of corticobulbar pathways recorded as corticobulbar motor evoked potentials of the cricothyroid muscles. Clin Neurophysiol 126(8):1570–1577

    Article  PubMed  Google Scholar 

  • Rogić M, Deletis V, Fernández-Conejero I (2014) Inducing transient language disruptions by mapping of Broca’s area with modified patterned repetitive transcranial magnetic stimulation protocol. J Neurosurg 120:1033–1041

    Article  PubMed  Google Scholar 

  • Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application: report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92

    Article  CAS  PubMed  Google Scholar 

  • Ruohonen J, Karhu J (2010) Navigated transcranial magnetic stimulation. Neurophysiol Clin 40:7–17

    Article  CAS  PubMed  Google Scholar 

  • Sahin NT, Pinker S, Cash SS, Schomer D, Halgren E (2009) Sequential processing of lexical, grammatical, and phonological information within Broca’s area. Science 326:445–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmelin R, Schnitzler A, Schmitz F, Freund HJ (2000) Single word reading in developmental stutterers and fluent speakers. Brain 123:1184–1202

    Article  PubMed  Google Scholar 

  • Schmidt S, Cichy RM, Kraft A, Brocke J, Irlbacher K, Brandt SA (2009) An initial transient-state and reliable measures of corticospinal excitability in TMS studies. Clin Neurophysiol 120:987–993

    Article  CAS  PubMed  Google Scholar 

  • Smith A (1989) Neural drive to muscles in stuttering. J Speech Hear Res 32:252–264

    Article  CAS  PubMed  Google Scholar 

  • Smith A, Luschei E, Denny M, Wood J, Hirano M, Badylak S (1993) Spectral analyses of activity of laryngeal and orofacial muscles in stutterers. J Neurol Neurosurg Psychiatry 56:1303–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer M, Koch MA, Paulus W, Weiller C, Büchel C (2002) Disconnection of speech-relevant brain areas in persistent developmental stuttering. Lancet 360:380–383

    Article  PubMed  Google Scholar 

  • Sommer M, Wischer S, Tergau F, Paulus W (2003) Normal intracortical excitability in developmental stuttering. Mov Disord 18:826–830

    Article  PubMed  Google Scholar 

  • Sommer M, Knappmeyer K, Hunter EJ, Gudenberg AW, Neef N, Paulus W (2009) Normal interhemispheric inhibition in persistent developmental stuttering. Mov Disord 24:769–773

    Article  PubMed  Google Scholar 

  • Watkins KE, Strafella AO, Paus T (2003) Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia 41:989–994

    Article  CAS  PubMed  Google Scholar 

  • World Medical Association (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191–2194

    Article  Google Scholar 

  • Wu JC, Maguire GG, Riley GG, Fallon JJ, LaCasse LL, Chin SS et al (1995) A positron emission tomography [18F] deoxyglucose study of developmental stuttering. NeuroReport 6:501–505

    Article  CAS  PubMed  Google Scholar 

  • Wu JC, Maguire G, Riley G, Lee A, Keator D, Tang C et al (1997) Increased dopamine activity associated with stuttering. NeuroReport 8:767–770

    Article  CAS  PubMed  Google Scholar 

  • Yairi E, Ambrose NG (2005) Early childhood stuttering. Pro-Ed, Austin

    Google Scholar 

  • Yousry T, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A et al (1997) Localization of the motor hand area to a knob on the precentral gyrus: a new landmark. Brain 120:141–157

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank speech and language pathologists Milica Medić and Manuela Vuković for the recruitment of several stuttering volunteers. We thank Dalibora Behmen for the English language corrections. We are especially grateful to medical (Lucijana Krželj, Petar Medaković) and technical (Nada Težački) support team from the Polyclinic Sunce, Split, Croatia. Part of this work was previously presented (abstract) at the 1st International Brain Stimulation Conference, March 2–4, 2015, Singapore. This work was funded by the Croatian Academy of Science and Arts. Classification code of the project at the School of Medicine University of Split Croatia: 406-7/14-02/0042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Rogić Vidaković.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Maja Rogić Vidaković and Ana Jerković have contributed equally to this work.

Handling editor: Brendan Weekes, University of Hong Kong.

Reviewers: Mehdi Bakhtiar, University of Hong Kong; Ivy Cheng, University of Hong Kong; Chan Karen, University of Hong Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogić Vidaković, M., Jerković, A., Jurić, T. et al. Neurophysiologic markers of primary motor cortex for laryngeal muscles and premotor cortex in caudal opercular part of inferior frontal gyrus investigated in motor speech disorder: a navigated transcranial magnetic stimulation (TMS) study. Cogn Process 17, 429–442 (2016). https://doi.org/10.1007/s10339-016-0766-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-016-0766-5

Keywords

Navigation