Skip to main content
Log in

A projection technique for incompressible flow in the meshless finite volume particle method

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The finite volume particle method is a meshless discretization technique, which generalizes the classical finite volume method by using smooth, overlapping and moving test functions applied in the weak formulation of the conservation law. The method was originally developed for hyperbolic conservation laws so that the compressible Euler equations particularly apply. In the present work we analyze the discretization error and enforce consistency by a new set of geometrical quantities. Furthermore, we introduce a discrete Laplace operator for the scheme in order to extend the method to second order partial differential equations. Finally, we transfer Chorin’s projection technique to the finite volume particle method in order to obtain a meshless scheme for incompressible flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Almgren, J.B. Bell and W.G. Szymczak, A numerical method for the incompressible Navier–Stokes equations based on an approximate projection, SIAM J. Sci. Comput. 17 (1996) 358–369.

    Google Scholar 

  2. A.J. Chorin, Numerical solution of the Navier–Stokes equations, Math. Comp. 23 (1968) 341–354.

    Google Scholar 

  3. A.J. Chorin and J.E. Marsden, A Mathematical Introduction to Fluid Mechanics (Springer, New York, 1979).

    Google Scholar 

  4. P.M. Gresho and S.T. Chan, On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 2: Implementation, Internat. J. Numer. Methods Fluids 11 (1990) 621–659.

    Google Scholar 

  5. M. Griebel and M. Schweitzer, A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic PDE, SIAM J. Sci. Comput. 22 (2000) 853–890.

    Google Scholar 

  6. D. Hietel, M. Junk, R. Keck and D. Teleaga, The finite volume particle method for conservation laws, in: Proc. of the GAMM Workshop Discrete Modelling and Discrete Algorithms in Continuum Mechanics, eds. T. Sonar and I. Thomas (Logos, Berlin, 2001) pp. 132–141.

    Google Scholar 

  7. D. Hietel and R. Keck, Consistency by coefficient-correction in the finite volume particle method, in: Meshfree Methods for Partial Differential Equations, eds. M. Griebel and M.A. Schweitzer, Lecture Notes in Computational Science and Engineering, Vol. 26 (Springer, Berlin, 2002) pp. 211–222.

    Google Scholar 

  8. D. Hietel and R. Keck, An improved coefficient-correction method for the finite volume particle method, to appear.

  9. D. Hietel, K. Steiner and J. Struckmeier, A finite volume particle method for compressible flows, Math. Models Methods Appl. Sci. 10 (2000) 1363–1382.

    Google Scholar 

  10. M. Junk and J. Struckmeier, Consistency analysis for meshfree methods for conservation laws, Mitt. Ges. Angew. Math. Mech. 24 (2002) 99–126.

    Google Scholar 

  11. R. Keck, A Meshless Projection Method for Incompressible Flow, Ph.D. thesis, Department of Mathematics, University of Kaiserslautern, Germany (Shaker, Aachen, 2002).

    Google Scholar 

  12. R. Klein, Semi-implicit extension of a Godunov-type scheme based on low mach number asymptotics I: One-dimensional flow, J. Comput. Phys. 121 (1995) 213–237.

    Google Scholar 

  13. J.J. Monaghan, Smoothed particle hydrodynamics, Ann. Rev. Astronomy Astrophys. 30 (1992) 543–574.

    Google Scholar 

  14. T. Schneider, N. Botta, K.J. Geratz and R. Klein, Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows, J. Comput. Phys. 155 (1999) 248–286.

    Google Scholar 

  15. T. Sonar, Multivariate Rekonstruktionsverfahren zur numerischen Berechnung hyperbolischer Erhaltungsgleichungen, Technical Report 95-02, Deutsche Forschungsanstalt für Luft- und Raumfahrt e. V., Institut für Strömungsmechanik, Göttingen (1995).

  16. D. Teleaga, Numerical studies of a finite volume particle method for conservation laws, Master’s thesis, Department of Mathematics, University of Kaiserslautern, Germany (2000).

  17. R. Temam, Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires II, Arch. Rational Mech. Anal. 33 (1969) 377–385.

    Google Scholar 

  18. S. Tiwari and J. Kuhnert, Finite pointset method based on the projection method for simulations of the incompressible Navier–Stokes equations, in: Meshfree Methods for Partial Differential Equations, eds. M. Griebel and M.A. Schweitzer, Lecture Notes in Computational Science and Engineering, Vol. 26 (Springer, Berlin, 2002) pp. 373–387.

    Google Scholar 

  19. H. Yserentant, P. Leinen and G. Gauger, The finite mass method, SIAM J. Numer. Anal. 37 (2000) 1768–1799.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Keck.

Additional information

Communicated by Z. Wu and B.Y.C. Hon

AMS subject classification

65M99, 68U20, 76B99, 76M12, 76M25, 76M28

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keck, R., Hietel, D. A projection technique for incompressible flow in the meshless finite volume particle method. Adv Comput Math 23, 143–169 (2005). https://doi.org/10.1007/s10444-004-1831-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-1831-7

Keywords

Navigation