Skip to main content
Log in

The focal geometry of circular and conical meshes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Circular meshes are quadrilateral meshes all of whose faces possess a circumcircle, whereas conical meshes are planar quadrilateral meshes where the faces which meet in a vertex are tangent to a right circular cone. Both are amenable to geometric modeling – recently surface approximation and subdivision-like refinement processes have been studied. In this paper we extend the original defining property of conical meshes, namely the existence of face/face offset meshes at constant distance, to circular meshes. We study the close relation between circular and conical meshes, their vertex/vertex and face/face offsets, as well as their discrete normals and focal meshes. In particular we show how to construct a two-parameter family of circular (resp., conical) meshes from a given conical (resp., circular) mesh. We further discuss meshes which have both properties and their relation to discrete surfaces of negative Gaussian curvature. The offset properties of special quadrilateral meshes and the three-dimensional support structures derived from them are highly relevant for computational architectural design of freeform structures. Another aspect important for design is that both circular and conical meshes provide a discretization of the principal curvature lines of a smooth surface, so the mesh polylines represent principal features of the surface described by the mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaschke, W.: Vorlesungen über Differentialgeometrie, vol. 3. Springer, Berlin (1929)

    Google Scholar 

  2. Bobenko, A.: Discrete conformal maps and surfaces. In: Symmetries and Integrability of Difference Equations. London Mathematical Society Lecture Note Series, vol. 255, pp. 97–108. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Bobenko, A., Hertrich-Jeromin, U.: Orthogonal nets and Clifford algebras. Tohoku Math. Publ. 20, 7–22 (2001)

    MathSciNet  Google Scholar 

  4. Bobenko, A., Hoffmann, T., Springborn, B.: Minimal surfaces from circle patterns: geometry from combinatorics. Ann. of Math. 164, 231–264 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Bobenko, A., Pinkall, U.: Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187–208 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Bobenko, A., Suris, Yu.: Discrete differential geometry. Consistency as integrability. (Preprint) (2005). http://arxiv.org/abs/math.DG/0504358

  7. Bobenko, A., Suris, Yu.: On organizing principles of discrete differential geometry, geometry of spheres. Russian Math. Surveys 62, 1–43 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cecil, T.: Lie Sphere Geometry. Springer, Berlin (1992)

    MATH  Google Scholar 

  9. Cieśliński, J., Doliwa, A., Santini, P.M.: The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices. Phys. Lett. A 235, 480–488 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Desbrun, M., Grinspun, E., Schröder, P., Polthier, K., et al.: Discrete differential geometry. In: SIGGRAPH Course Notes, http://ddg.cs.columbia.edu (2006)

  11. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, New Jersey (1976)

    MATH  Google Scholar 

  12. Doliwa, A., Manakov, S.V., Santini, P.M.: \(\overline\partial\)-reductions of the multidimensional quadrilateral lattice. The multidimensional circular lattice. Comm. Math. Phys. 196, 1–18 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Doliwa, A., Santini, P.M.: Multidimensional quadrilateral lattices are integrable. Phys. Lett. A 233(4–6), 365–372 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Doliwa, A., Santini, P.M., Mañas, M.: Transformations of quadrilateral lattices. J. Math. Phys. 41, 944–990 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hertrich-Jeromin, U.: Introduction to Möbius differential geometry. In: London Mathematical Society Lecture Note Series, vol. 300. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  16. Konopelchenko, B.G., Schief, W.K.: Three-dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, 3075–3104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, Y., Pottmann, H., Wallner, J., Yang, Y., Wang, W.: Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. 25(3), 681–689 (2006). In: Proc. SIGGRAPH 2006.

    Article  Google Scholar 

  18. Mañas, M., Doliwa, A., Santini, P.M.: Darboux transformations for multidimensional quadrilateral lattices. I. Phys. Lett., A 232, 99–105 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Martin, R.R., de Pont, J., Sharrock, T.J.: Cyclide surfaces in computer aided design. In: Gregory, J.A. (ed.) The Mathematics of Surfaces, pp. 253–268. Clarendon Press, Oxford (1986)

    Google Scholar 

  20. Porteous, I.R.: Geometric Differentiation for the Intelligence of Curves and Surfaces. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  21. Pottmann, H.: Generalized principal meshes and their support structures. Geometry preprint No. 158. Technische Universität Wien (2006)

  22. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2001)

    MATH  Google Scholar 

  23. Sauer, R.: Parallelogrammgitter als modelle pseudosphärischer Flächen. Math. Z. 52, 611–622 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sauer, R.: Differenzengeometrie. Springer, Berlin (1970)

    MATH  Google Scholar 

  25. Wallner, J., Pottmann, H.: Infinitesimally flexible meshes and discrete minimal surfaces. Monatsh. Math. (to appear)

  26. Wang, W., Wallner, J., Liu, Y.: An angle criterion for conical mesh vertices. Geometry preprint No. 157 (2006). Technische Universität Wien. http://www.geometrie.tuwien.ac.at/ig/papers/tr157.pdf

  27. Wunderlich, W.: Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Sitzungsber. - Osterr. Akad. Wiss. 160, 41–77 (1951)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Pottmann.

Additional information

Communicated by R. Farouki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pottmann, H., Wallner, J. The focal geometry of circular and conical meshes. Adv Comput Math 29, 249–268 (2008). https://doi.org/10.1007/s10444-007-9045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-007-9045-4

Keywords

Mathematics Subject Classifications (2000)

Navigation