Skip to main content
Log in

Hexagonal tight frame filter banks with idealized high-pass filters

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper studies the construction of hexagonal tight wavelet frame filter banks which contain three “idealized” high-pass filters. These three high-pass filters are suitable spatial shifts and frequency modulations of the associated low-pass filter, and they are used by Simoncelli and Adelson in (Proc IEEE 78:652–664, 1990) for the design of hexagonal filter banks and by Riemenschneider and Shen in (Approximation Theory and Functional Analysis, pp. 133–149, Academic Press, Boston 1991; J. Approx Theory 71:18–38 1992) for the construction of 2-dimensional orthogonal filter banks. For an idealized low-pass filter, these three associated high-pass filters separate high frequency components of a hexagonal image in 3 different directions in the frequency domain. In this paper we show that an idealized tight frame, a frame generated by a tight frame filter bank containing the “idealized” high-pass filters, has at least 7 frame generators. We provide an approach to construct such tight frames based on the method by Lai and Stöckler in (Appl Comput Harmon Anal 21:324–348, 2006) to decompose non-negative trigonometric polynomials as the summations of the absolute squares of other trigonometric polynomials. In particular, we show that if the non-negative trigonometric polynomial associated with the low-pass filter p can be written as the summation of the absolute squares of other 3 or less than 3 trigonometric polynomials, then the idealized tight frame associated with p requires exact 7 frame generators. We also discuss the symmetry of frame filters. In addition, we present in this paper several examples, including that with the scaling functions to be the Courant element B 111 and the box-spline B 222. The tight frames constructed in this paper will have potential applications to hexagonal image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, J.D.: Coding transforms for the hexagon grid. Technical Report CRC-TR-9851. Ricoh Calif. Research Ctr., Aug. (1998)

  2. Allen, J.D.: Perfect reconstruction filter banks for the hexagonal grid. In: Fifth International Conference on Information, Communications and Signal Processing 2005, pp. 73–76, Bangkok, December 2005

  3. Anterrieu, E., Waldteufel, P., Lannes, A.: Apodization functions for 2-D hexagonally sampled synthetic aperture imaging radiometers. IEEE Trans. Geosci. Remote Sens. 40, 2531–2542 (2002)

    Article  Google Scholar 

  4. Burt, P.J.: Tree and pyramid structures for coding hexagonally sampled binary images. Comput. Graph. Image Process. 14, 271–80 (1980)

    Article  Google Scholar 

  5. Camps, A., Bara, J., Sanahuja, I.C., Torres, F.: The processing of hexagonally sampled signals with standard rectangular techniques: application to 2-D large aperture synthesis interferometric radiometers. IEEE Trans. Geosci. Remote Sens. 35, 183–190 (1997)

    Article  Google Scholar 

  6. Chan, R., Riemenschneider, S.D., Shen, L.X., Shen, Z.W.: Tight frame: an efficient way for high-resolution image reconstruction. Appl. Comput. Harmon. Anal. 17, 91–115 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chui, C.K., He, W.J.: Compactly supported tight frames associated with refinable functions. Appl. Comput. Harmon. Anal. 8, 293–319 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chui, C.K., He, W.J.: Construction of multivariate tight frames via Kronecker products. Appl. Comput. Harmon. Anal. 11, 305–312 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chui, C.K., He, W.J., Stöckler, J.: Compactly supported tight and sibling frames with maximum vanishing moments. Appl. Comput. Harmon. Anal. 13, 224–262 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chui, C.K., He, W.J., Stöckler, J., Sun, Q.Y.: Compactly supported tight affine frames with integer dilations and maximum vanishing moments. Adv. Comput. Math. 18, 159–187 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chui, C.K., Shi, X.L.: Inequalities of Littlewood-Paley type for frames and wavelets. SIAM J. Math. Anal. 24, 263–277 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cohen, A., Schlenker, J.-M.: Compactly supported bidimensional wavelets bases with hexagonal symmetry. Constr. Approx. 9, 209–236 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Daubechies, I., Han, B., Ron, A., Shen, Z.W.: Framelets: MRA-based construction of wavelet frames. Appl. Comput. Harmon. Anal. 14, 1–46 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fitz, A.P., Green, R.: Fingerprint classification using hexagonal fast Fourier transform. Pattern Recogn. 29, 1587–1597 (1996)

    Article  Google Scholar 

  15. Golay, M.J.E.: Hexagonal parallel pattern transformations. IEEE Trans. Comput. 18, 733–740 (1969)

    Article  Google Scholar 

  16. Han, B.: On dual wavelet tight frames. Appl. Comput. Harmon. Anal. 4, 380–413 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Han, B.: Projectable multivariate refinable functions and biorthogonal wavelets. Appl. Comput. Harmon. Anal. 13, 89–102 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Han, B., Mo, Q.: Splitting a matrix of Laurent polynomials with symmetry and its application to symmetric framelet filter banks. SIAM J. Matrix Anal Appl. 26, 97–124 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Han, B., Shen, Z.W.: Wavelets from the Loop scheme. J. Fourier Anal. Appl. 11, 615–637 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. He, X.J., Jia, W.J.: Hexagonal structure for intelligent vision. In: Proceedings of the 2005 First International Conference on Information and Communication Technologies, pp. 52–64, Karachi, August 2005

  21. Heil, C., Walnut, D.: Continuous and discrete wavelet transforms. SIAM Rev. 31, 628–666 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jiang, Q.T.: Parameterizations of masks for tight affine frames with two symmetric/antisymmetric generators. Adv. Comput. Math. 18, 247–268 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jiang, Q.T.: FIR filter banks for hexagonal data processing. IEEE Trans. Image Process. (in press)

  24. Lai, M.-J., Stöckler, J.: Construction of multivariate compactly supported tight wavelet frames. Appl. Comput. Harmon. Anal. 21, 324–348 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Laine, A.F., Schuler, S.: Hexagonal wavelet representations for recognizing complex annotations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 740–745, Seattle, WA, June 1994

  26. Laine, A.F., Schuler, S., Fan, J., Huda, W.: Mammographic feature enhancement by multiscale analysis. IEEE Trans. Med Imag. 13, 725–740 (1994)

    Article  Google Scholar 

  27. Middleton, L., Sivaswarmy, J.: Hexagonal Image Processing: A Practical Approach. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  28. Petersen, D.P., Middleton, D.: Sampling and reconstruction of wave-number-limited functions in N-dimensional Euclidean spaces. Inf. Control 5, 279–323 (1962)

    Article  MathSciNet  Google Scholar 

  29. Petukhov, A.: Explicit construction of framelets. Appl. Comput. Harmon. Anal. 11, 313–327 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Riemenschneider, S.D., Shen, Z.W.: Box splines, cardinal series, and wavelets. In: Chui, C.K. (ed.) Approximation Theory and Functional Analysis, pp. 133–149. Academic Press, Boston (1991)

    Google Scholar 

  31. Riemenschneider, S.D., Shen, Z.W.: Wavelets and pre-wavelets in low dimensions. J. Approx. Theory 71, 18–38 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ron, A., Shen, Z.W.: Affine systems in L 2(R d): the analysis of the analysis operator. J. Funct. Anal. 148, 408–447 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ron, A., Shen, Z.W.: Compactly supported tight affine spline frames in \(L_{2} (\mathbb{R}^d)\). Math. Comput. 67, 191–207 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sahr, K., White, D., Kimerling, A.J.: Geodesic discrete global grid systems. Cartogr. Geogr. Inf. Sci. 30, 121–134 (2003)

    Article  Google Scholar 

  35. Schuler, S., Laine, A.F.: Hexagonal QMF banks and wavelets. In: Akay, M. (ed.) A Chapter in “Time Frequency and Wavelets in Biomedical Signal Processing”. IEEE Press, Piscataway (1997)

    Google Scholar 

  36. Selesnick, I.W., Abdelnour, A.F.: Symmetric wavelet tight frames with two generators. Appl. Comput. Harmon. Anal. 17, 211–225 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Simoncelli, E., Adelson, E.: Non-separable extensions of quadrature mirror filters to multiple dimensions. Proc. IEEE 78, 652–664 (1990)

    Article  Google Scholar 

  38. Staunton, R.C., Storey, N.: A comparison between square and hexagonal sampling methods for pipeline image processing. In: Proc. of SPIE, Optics, Illumination, and Image Sensing for Machine Vision IV, vol. 1194, pp. 142–151. SPIE, Bellingham (1990)

  39. Van De Ville, D., Blu, T., Unser, M., Philips, W., Lemahieu, I., Van de Walle, R.: Hex-splines: a novel spline family for hexagonal lattices. IEEE Trans. Image Process. 13, 758–772 (2004)

    Article  MathSciNet  Google Scholar 

  40. Zheng, X.Q., Ritter, G.X., Wilson, D.C., Vince, A.: Fast Discrete Fourier Transform Algorithms on Regular Hexagonal Structures. University of Florida, Gainsville, FL (2006, preprint)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingtang Jiang.

Additional information

Communicated by Lixin Shen and Yuesheng Xu.

Research supported by UM Research Board 10/05 and UMSL Research Award 10/06.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Q. Hexagonal tight frame filter banks with idealized high-pass filters. Adv Comput Math 31, 215–236 (2009). https://doi.org/10.1007/s10444-008-9085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-008-9085-4

Keywords

Mathematics Subject Classifications (2000)