Skip to main content
Log in

Beamlets are densely embedded in H −1

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The insufficiency of using ordinary measurable functions to model complex natural images was first emphasized by David Mumford (Q Appl Math 59:85–111, 2001). The idea was later rediscovered by Yves Meyer (Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, vol. 22, University Lecture Series, AMS, Providence, 2001) who introduced proper texture models based on generalized functions or distributions. The simpler but effective Sobolev texture model of H  − 1 was subsequently explored by Osher et al. (Multiscale Model Simul 1:349–370, 2003) to facilitate practical computation. H  − 1 textures have also been further employed in the recent works of Daubechies and Teschke (Appl Comput Harmon Anal 19(1):1–16, 2005), Lieu and Vese (UCLA CAM Tech Report, 05–33, 2005), Shen (Appl Math Res Express 4:143–167, 2005), and many others, leading to a new generation of models for image processing and analysis. On the other hand, beamlets are the unconventional class of geometric wavelets invented by Donoho and Huo (Multiscale and Multiresolution Methods, Lect Notes Comput Sci Eng, vol. 20, pp. 149–196. Springer, Berlin, 2002) to efficiently represent and detect lower dimensional singular image features. In the current work, we make an intriguing connection between the above two realms by demonstrating that H  − 1 is the natural space (of generalized functions) that hosts beamlets, and in return can be completely described by them. Computational evidences existing in the literature also help confirm this newly discovered bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.: A compactness theorem for a new class of functions of bounded variation. Bollettino U. M. I. 7(3-B), 857–881 (1989)

    Google Scholar 

  2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Springer-Verlag (2001)

  3. Aujol, J.-F., Aubert, G., Blanc-Feraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imag. Vision 22(1), 71–88 (2005)

    Article  MathSciNet  Google Scholar 

  4. Aujol, J.-F., Kang, S.-H.: Color image decomposition and restoration. J. Visual Comm. Image Rep. 17, 916–928 (2006)

    Article  Google Scholar 

  5. Chambolle, A., Lions, P.L.: Image recovery via total variational minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chan, T.F., Shen, J.: On the role of the BV image model in image restoration. Amer. Math. Soc. In: Cheng, S.Y., Shu, C.-W., Tang, T. (eds.), Contemporary Mathematics, volume on Recent Advances in Scientific Computing and Partial Differential Equations, vol. 330, pp. 25–41 (2003)

  7. Chan, T.F., Shen, J.: Image processing and analysis: variational, PDE, wavelet, and stochastic methods. SIAM Publisher, Philadelphia (2005)

    MATH  Google Scholar 

  8. Chan, T.F., Shen, J.: Variational image inpainting. Commun. Pure Appl. Math. 58, 579–619 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chan, T.F., Shen, J., Vese, L.: Variational PDE models in image processing. Notices Amer. Math. Soc. 50, 14–26 (2003)

    MATH  MathSciNet  Google Scholar 

  10. Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  11. Daubechies, I., Teschke, G.: Variational image restoration by means of wavelets: simultaneous decomposition, deblurring, and denoising. Appl. Comput. Harmon. Anal. 19(1), 1–16 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. DeVore, R.A., Jawerth, B., Lucier, B.J.: Image compression through wavelet transform coding. IEEE Trans. Inform. Theory 38(2), 719–746 (1992)

    Article  MathSciNet  Google Scholar 

  13. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inform. Theory 41(3), 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Donoho, D.L., Huo, X.: Beamlets and multiscale image analysis. In: Multiscale and Multiresolution Methods, Lect. Notes Comput. Sci. Eng., vol. 20, pp. 149–196. Springer, Berlin (2002)

    Google Scholar 

  15. Donoho, D.L., Huo, X.: BeamLab and reproducible research. Int. J. Wavelets Multiresolution Inf. Process. 2(4), 391–414 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Donoho, D.L., Johnstone, I.M.: Ideal spacial adaption by wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Evans, L.C.: Partial differential equations. Amer. Math. Soc. (1998)

  18. Field, D.J.: Scale-invariance and self-similar wavelet transforms: an analysis natural scenes and mammalian visual systems. In: Farge, M., et al. (eds.), Wavelets, Fractals and Fourier Transforms, pp. 151–193. Oxford University Press (1993)

  19. Folland, G.B.: Real Analysis—Modern Techniques and their Applications, 2nd edn. John Wiley & Sons, Inc. (1999)

  20. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  21. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984)

    MATH  Google Scholar 

  22. Kanizsa, G.: Organization in Vision. Praeger, New York (1979)

    Google Scholar 

  23. Lee, A.B., Mumford, D., Huang, J.: Occlusion models for natural images: a statistical study of a scale-invariant dead leaves model. Int. J. Comp. Vis. 41, 35–59 (2001)

    Article  MATH  Google Scholar 

  24. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Amer. Math. Soc. (2001)

  25. Lieu, L., Vese, L.: Image restoration and decomposition via bounded total variation and negative Hilbert–Sobolev spaces. UCLA CAM Tech. Report, 05–33 (2005)

  26. Lin, F.H., Yang, X.P.: Geometric Measure Theory: An Introduction. International Press (2002)

  27. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press (1998)

  28. Marr, D.: Vision. Freeman, San Francisco (1980)

    Google Scholar 

  29. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, vol. 22. AMS, Providence (2001)

    MATH  Google Scholar 

  30. Morel, J.-M., Solimini, S.: Variational Methods in Image Segmentation. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 14. Birkhäuser, Boston (1995)

    Google Scholar 

  31. Mumford, D., Gidas, B.: Stochastic models for generic images. Q. Appl. Math. 59, 85–111 (2001)

    MATH  MathSciNet  Google Scholar 

  32. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Applied. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  33. Nitzberg, M., Mumford, D., Shiota, T.: Filtering, segmentation, and depth. Lecture Notes in Comp. Sci., vol. 662. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  34. Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H −1 norm. Multiscale Model. Simul. 1, 349–370 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rudin, L., Osher, S.: Total variation based image restoration with free local constraints. In: Proc. 1st IEEE ICIP, vol. 1, pp. 31–35 (1994)

  36. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  37. Shen, J.: Inpainting and the fundamental problem of image processing. SIAM News 36, (2003)

  38. Shen, J.: Bayesian video dejittering by BV image model. SIAM J. Appl. Math. 64(5), 1691–1708 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Shen, J.: Piecewise H −  + H 0 + H 1 images and the Mumford–Shah–Sobolev model for segmented image decomposition. Appl. Math. Res. Express 4, 143–167 (2005)

    Article  Google Scholar 

  40. Shen, J.: Noncommutative monoids of occlusive preimages. J. Math. Imag. Vis. 24, 5–17 (2006)

    Article  Google Scholar 

  41. Shen, J.: A stochastic-variational model for soft Mumford–Shah segmentation. Int. J. Biomed. Imag. 2006(92329), 1–14 (2006)

    Article  Google Scholar 

  42. Shen, J., Jung, Y.-M.: Weberized Mumford–Shah model with Bose–Einstein photon noise. Appl. Math. Optim. 53, 331–358 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley, MA (1996)

    Google Scholar 

  44. Vese, L.A.: A study in the BV space of a denoising-deblurring variational problem. Appl. Math. Optim. 44(2), 131–161 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  45. Zhu, S.C., Mumford, D.: Prior learning and Gibbs reaction-diffusion. IEEE Trans. Pattern Anal. Machine Intell. 19(11), 1236–1250 (1997)

    Article  Google Scholar 

  46. Zhu, S.C., Wu, Y.N., Mumford, D.: Minimax entropy principle and its applications to texture modeling. Neural Comput. 9, 1627–1660 (1997)

    Article  Google Scholar 

  47. Zhu, S.C., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multi-band image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 884–900 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong (Jackie) Shen.

Additional information

Communicated by Lixin Shen and Yuesheng Xu.

This work has been partially supported by the NSF (USA) under grant number DMS-0604510 (2006–2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J.(. Beamlets are densely embedded in H −1 . Adv Comput Math 31, 329–348 (2009). https://doi.org/10.1007/s10444-008-9094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-008-9094-3

Keywords

Mathematics Subject Classifications (2000)

Navigation