Skip to main content
Log in

Top-level acceleration of adaptive algebraic multilevel methods for steady-state solution to Markov chains

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In many application areas, including information retrieval and networking systems, finding the steady-state distribution vector of an irreducible Markov chain is of interest and it is often difficult to compute efficiently. The steady-state vector is the solution to a nonsymmetric eigenproblem with known eigenvalue, B x = x, subject to probability constraints \( \Vert{\bf x}\Vert _1 = 1\) and x > 0, where B is column stochastic, that is, B ≥ O and 1 t B = 1 t. Recently, scalable methods involving Smoothed Aggregation (SA) and Algebraic Multigrid (AMG) were proposed to solve such eigenvalue problems. These methods use multiplicative iterate updates versus the additive error corrections that are typically used in nonsingular linear solvers. This paper discusses an outer iteration that accelerates convergence of multiplicative update methods, similar in principle to a preconditioned flexible Krylov wrapper applied to an additive iteration for a nonsingular linear problem. The acceleration is performed by selecting a linear combination of old iterates to minimize a functional within the space of probability vectors. Two different implementations of this idea are considered and the effectiveness of these approaches is demonstrated with representative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman, A., Plemmons R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1987)

    Google Scholar 

  2. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31(138), 333–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandt, A.: Algebraic multigrid theory: the symmetric case. Appl. Math. Comput. 9, 23–26 (1986)

    Article  MathSciNet  Google Scholar 

  4. Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid (AMG) for sparse matrix equations. In: Evans, D.J. (ed.) Sparsity and its Applications, pp. 257–284. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  5. Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T., McCormick, S., Ruge, J.: Adaptive smoothed aggregation (αsa) multigrid. SIAM Rev. (SIGEST) 47, 317–346 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezina, M., Falgout, R., Maclachlan, S., Manteuffel, T., McCormick, S., Ruge, J.: Adaptive algebraic multigrid. SIAM J. Sci. Comput. (SISC) 27, 1261–1286 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Briggs, W., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM Books, Philadelphia (2000)

    Book  MATH  Google Scholar 

  8. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic, London (1981)

    MATH  Google Scholar 

  9. Horton, G., Leutenegger, S.T.: A Multi-level Solution Algorithm for Steady-state Markov Chains, pp. 191–200. ACM SIGMETRICS (1994)

  10. Molloy, M.K.: Performance analysis using stochastic Petri nets. IEEE Trans. Comput. C(31), 913–917 (1982)

    Article  Google Scholar 

  11. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM Books, Philadelphia (2003)

    Book  MATH  Google Scholar 

  12. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput. (SISC) 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schweitzer, P.J., Kindle, K.W.: An iterative aggregation–disaggregation algorithm for solving linear equations. Appl. Math. Comput. 18, 313–354 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. De Sterck, H., Manteuffel, T.A., McCormick, S.F., Miller, K., Ruge, J., Sanders, G.: Algebraic multigrid for Markov chains. SIAM J. Sci. Comput. 32, 544–562 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Sterck, H., Manteuffel, T.A., McCormick, S.F., Nguyen, Q., Ruge, J.: Multilevel adaptive aggregation for Markov chains, with application to web ranking. SIAM J. Sci. Comput. (SISC) 30, 2235–2262 (2008)

    Article  MATH  Google Scholar 

  16. De Sterck, H., Manteuffel, T.A., McCormick, S.F., Pearson, J., Ruge, J., Sanders, G.: Smoothed aggregation multigrid for Markov chains. SIAM J. Sci. Comput. (SISC) 32, 40–61 (2009)

    Article  Google Scholar 

  17. De Sterck, H., Miller, K., Sanders, G., Winlaw, M.: Recursively accelerated multilevel aggregation for Markov chains. SIAM J. Sci. Comput. 32, 1652 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stewart, W.J.: An Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)

    Google Scholar 

  19. Treister, E., Yavneh, I.: Square and stretch multigrid for stochastic matrix eigenproblems. Numer. Linear Algebra Appl. 17, 229–251 (2009)

    MathSciNet  Google Scholar 

  20. Trottenberg, U., Osterlee, C.W., Schuller, A.: Multigrid (Appendix A: An Introduction to Algebraic Multigrid) (Appendix by K. Stuben). Academic, New York (2000)

    Google Scholar 

  21. Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid on unstructured meshes. Technical Report X, Center for Computational Mathematics, Mathematics Department (1994)

  22. Virnik, E.: An algebraic multigrid preconditioner for a class of singular m-matrices. SIAM J. Sci. Comput. (SISC) 29(5), 1982–1991 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Washio, T., Oosterlee, C.W.: Krylov subspace acceleration for nonlinear multigrid schemes. Electron. Trans. Numer. Anal. 6, 271–290 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sanders.

Additional information

Communicated by Rafael Bru and Juan Manuel Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Sterck, H., Miller, K., Manteuffel, T. et al. Top-level acceleration of adaptive algebraic multilevel methods for steady-state solution to Markov chains. Adv Comput Math 35, 375–403 (2011). https://doi.org/10.1007/s10444-010-9168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-010-9168-x

Keywords

Mathematics Subject Classifications (2010)

Navigation