Skip to main content
Log in

On computing with the Hilbert spline transform

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We develop a fast algorithm for computing the Hilbert transform of a function from a data set consisting of n function values and prove that the complexity of the proposed algorithm is O(n log n). Our point of view is fundamentally based on a B-spline series approximation constructed from available data. In this regard, we obtain new formulas for the Hilbert transform of a B-spline as a divided difference. For theoretical simplicity and computational efficiency we give a detailed description of our algorithm, as well as provided optimal approximation order, only in the case of quadratic splines. However, if higher accuracy is required, extensions of our method to spline approximation of any prescribed degree readily follows the pattern of the quadratic case. Numerical experiments have confirmed that our algorithm has superior performance than previously available methods which we briefly survey in Section 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benjamin, T.: Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559–562 (1967)

    Article  MATH  Google Scholar 

  2. Berrut, J.P., Trefetnen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46, 501–517 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Boor, C.: On calculating with B-splines. J. Approx. Theory 6, 50–62 (1972)

    Article  MATH  Google Scholar 

  4. de Boor, C.: Splines as linear combinations of B-splines. A survey. In: Lorentz, G.G., Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory II, pp. 1–47 (1976)

  5. de Boor, C.: A Practical Guide to Splines. Springer-Verlag, New York (1978)

    Book  MATH  Google Scholar 

  6. Chapman, S.J., Vanden-Broeck, J.: Exponential asymptotics and gravity waves. J. Fluid Mech. 567, 299–326 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Q., Huang, N., Riemenschneider, S., Xu, Y.: A B-spline approach for empirical mode decomposition. Adv. Comput. Math. 24, 171–195 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Criscuolo, G.: A new algorithm for Cauchy principal value and Hadamard finite-part integrals. J. Comput. Appl. Math. 78(2), 255–275 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dagnino, C., Santi, E.: Spline product quadrature rules for Cauchy singular integrals. J. Comput. Appl. Math. 33(2), 133–140 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K.: Uniform convergence of optimal order quadrature rules for Cauchy principal value integrals. J. Comput. Appl. Math. 56(3), 321–329 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diethelm, K.: Modified compound quadrature rules for strongly singular integrals. Computing 52(4), 337–354 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diethelm, K.: Peano kernels and bounds for the error constants of Gaussian and related quadrature rules for Cauchy principal value integrals. Numer. Math. 73(1), 53–63 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elliott, D., Paget, D.F.: Gauss type quadrature rules for Cauchy principal value integrals. Math. Comput. 33(145), 301–309 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  15. Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House, Boston (1996)

    MATH  Google Scholar 

  16. Hasegawa, T.: Uniform approximations to finite Hilbert transform and its derivative. J. Comput. Appl. Math. 163(1), 127–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. King, F.W.: Hilbert Transforms: Volume 1. Cambridge University Press (2009)

  18. King, F.W., Smethells, G.J., Helleloid G.T., Pelzl, P.J.: Numerical evaluation of Hilbert transforms for oscillatory functions: a convergence accelerator approach. Comput. Phys. Commun. 145(2), 256–266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marple, S.L.: Computing the discrete-time analytic signal via FFT. IEEE Trans. Signal Process. 47, 2600–2603 (1999)

    Article  MATH  Google Scholar 

  20. Micchelli, C.A.: Mathematical Aspects of Geometric Modeling. CBMS 65, SIAM Publishing (1994)

  21. Micchelli, C.A., Xu, Y., Zhang, H.: On the translation invariant operators which preserve the B-spline recurrence. Adv. Comput. Math. 28, 157–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Monegato, G.: The numerical evaluation of one-dimensional Cauchy principal value integrals. Computing 29(4), 337–354 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  24. Olver, S.: Computing the Hilbert transform and its inverse. Technical Report (2009)

  25. Ono, H.: Algebraic solitary waves in stratified fluids. J. Phys. Soc. Jpn. 39, 1082–1091 (1975)

    Article  Google Scholar 

  26. Orsi, A.P.: Spline approximation for Cauchy principal value integrals. J. Comput. Appl. Math. 30(2), 191–201 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge, London (1981)

    MATH  Google Scholar 

  28. Schumaker, L.L.: Spline Functions: Basic Theory. Pure and Applied Mathematics. Wiley, New York (1981)

    Google Scholar 

  29. Smith, W.E., Lyness, J.N.: Applications of Hilbert transform theory to numerical quadrature. Math. Comput. 23, 231–252 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stein, E.M., Shakarchi, R.: Real Analysis. Princeton Lecture in Analysis III. Princeton University Press, Princeton and Oxford (2005)

    Google Scholar 

  31. Weideman, J.A.C.: Computing the Hilbert transform on the real line. Math. Comput. 64, 745–762 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou, C., Yang, L., Liu, Y., Yang, Z.: A novel method for computing the Hilbert transform with Haar multiresolution approximation. J. Comput. Appl. Math. 223(2), 585–597 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yu.

Additional information

Communicated by Zhongying Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Micchelli, C.A., Xu, Y. & Yu, B. On computing with the Hilbert spline transform. Adv Comput Math 38, 623–646 (2013). https://doi.org/10.1007/s10444-011-9252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9252-x

Keywords

Mathematics Subject Classifications (2010)

Navigation