Skip to main content
Log in

Exponential polynomial reproducing property of non-stationary symmetric subdivision schemes and normalized exponential B-splines

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

An important capability for a subdivision scheme is the reproducing property of circular shapes or parts of conics that are important analytical shapes in geometrical modeling. In this regards, this study first provides necessary and sufficient conditions for a non-stationary subdivision to have the reproducing property of exponential polynomials. Then, the approximation order of such non-stationary schemes is discussed to quantify their approximation power. Based on these results, we see that the exponential B-spline generates exponential polynomials in the associated spaces, but it may not reproduce any exponential polynomials. Thus, we present normalized exponential B-splines that reproduce certain sets of exponential polynomials. One interesting feature is that the set of exponential polynomials to be reproduced is varied depending on the normalization factor. This provides us with the necessary accuracy and flexibility in designing target curves and surfaces. Some numerical results are presented to support the advantages of the normalized scheme by comparing them to the results without normalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beccari, C., Casciola, G., Romani, L.: A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics. Comput. Aided Geom. Des. 24, 1–9 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beccari, C., Casciola, G., Romani, L.: An interpolating 4-point C 2 ternary non-stationary subdivision scheme with tension control. Comput. Aided Geom. Des. 24, 210–219 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beccari, C., Casciola, G., Romani, L.: Shape controlled interpolatory ternary subdivision. Appl. Math. Comput. 215(3), 916–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10, 350–355 (1978)

    Article  Google Scholar 

  5. Cavaretta, A., Dahmen, W., Michelli, C.A.: Stationary subdivision. Mem. Am. Math. Soc. 93, 1–186 (1991)

    Google Scholar 

  6. Cohen, E., Lyche, T., Riesenfeld, R.: Discrete B-spline and subdivision techniques in Computer-Aided Geometric Design and Computer Graphics. Comput. Graph. Image Process. 14, 87–111 (1980)

    Article  Google Scholar 

  7. Conti, C., Gemignani, L., Romani, L.: From approximating to interpolatory non-stationary subdivision schemes with the same generation properties. Adv. Comput. Math. 35, 217–241(2011)

    Google Scholar 

  8. Dahmen, W., Micchelli, C.A.: On multivariate E-splines. Adv. Math. 76, 33–93 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dahmen, W., Micchelli, C.A.: Using two-slanted matrices for subdivision. Proc. Lond. Math. Soc. 69(3), 428–448 (1994)

    Google Scholar 

  10. Daniel, S., Shunmugaraj, P.: An approximating C 2 non-stationary subdivision scheme. Comput. Aided Geom. Des. 26, 810–821 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation. Constr. Approx. 5, 49–68 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doo, D., Sabin, M.: Behaviour of recursively division surfaces near extraordinary points. Comput. Aided Des. 10, 356–360 (1978)

    Article  Google Scholar 

  13. Dyn, N., Levin, D.: Analysis of asymptotically equivalent binary subdivision schemes. J. Math. Anal. Appl. 193, 594–621 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dyn, N., Levin, D., Yoon, J.: Analysis of univariate non-stationary subdivision schemes with application to Gaussian-based interpolatory schemes. SIAM J. Math. Analy. 39, 470–488 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dyn, N.: Subdivision schemes in computer-aided geometric design. In: Light, W.A. (ed.) Advances in Numerical Analysis, vol. II: Wavelets, Subdivision Algorithms and Radial Basis Functions, pp. 36–104. Oxford University Press (1992)

  16. Dyn, N., Hormann, K., Sabin, M., Shen, Z.: Polynomial reproduction by symmetric subdivision schemes. J. Approx. Theory 155, 28–42 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dyn, N., Gregory, J.A., Levin, D.: A butterfly subdivision scheme for surface interpolation with tension controll. ACM Trans. Graph. 9, 160–169 (1990)

    Article  MATH  Google Scholar 

  18. Dyn, N., Levin, D., Luzzatto, A.: Exponential reproducing subdivision scheme. Found. Comput. Math. 3, 187–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jena, M.J., Shunmugaraj, P., Das, P.J.: A subdivision algorithm for trigonometric spline curves. Comput. Aided Geom. Des. 19, 71–88 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jena, M.J., Shunmugaraj, P., Das, P.J.: A non-stationary sudivision scheme for generalizing trigonometric surfaces to arbitrary meshes. Comput. Aided Geom. Des. 20, 61–77 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jena, M.K., Shunmugaraj, P., Das, P.C.: A non-stationary subdivision scheme for curve interpolation. Anziam J. v44(E), 216–235 (2003)

  22. Lee, Y.J., Yoon, J.: Non-stationary subdivision schemes for surface interpolation based on exponential polynomials. Appl. Numer. Math. 60, 130–141 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Micchelli, C.A.: Cardianl L-Splines. Studies in Spline Functions and Approximation Theory, pp. 203–255. Academic Press, New York (1976)

    Google Scholar 

  24. Micchelli, C.A.: Interpolatory subdivision schemes and wavelets. Approx. Theory 86, 41–71 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Romani, L.: From approximting subdivision schemes for exponential splines to high-performance interpolting algorithms. J. Comput. Appl. Math. 224, 383–396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon Ju Lee.

Additional information

Communicated by Charles Micchelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, B., Kim, H.O., Lee, Y.J. et al. Exponential polynomial reproducing property of non-stationary symmetric subdivision schemes and normalized exponential B-splines. Adv Comput Math 38, 647–666 (2013). https://doi.org/10.1007/s10444-011-9253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9253-9

Keywords

Navigation