Skip to main content
Log in

Super Gabor frames on discrete periodic sets

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Due to its potential applications in multiplexing techniques such as time division multiple access and frequency division multiple access, superframe has interested some mathematicians and engineering specialists. In this paper, we investigate super Gabor systems on discrete periodic sets in terms of a suitable Zak transform matrix, which can model signals to appear periodically but intermittently. Complete super Gabor systems, super Gabor frames and Gabor duals for super Gabor frames on discrete periodic sets are characterized; An explicit expression of Gabor duals is established, and the uniqueness of Gabor duals is characterized. On the other hand, discrete periodic sets admitting complete super Gabor systems, super Gabor frames, super Gabor Riesz bases are also characterized. Some examples are also provided to illustrate the general theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander, L., Gertner, I.C., Tolimieri, R.: The discrete Zak transform application to time-frequency analysis and synthesis of nonstationary signal. IEEE Trans. Signal Process. 39, 825–835 (1991)

    Article  Google Scholar 

  2. Balan, R.: Extensions of no-go theorems to many signal systems. Wavelets, multiwavelets, and their applications (San Diego, CA, 1997), Contemp. Math., vol. 216, pp. 3–14. American Mathematical Society, Providence (1998)

  3. Balan, R.: Density and redundancy of the noncoherent Weyl–Heisenberg superframes. Contemp. Math. 247, 29–41 (1999)

    Article  MathSciNet  Google Scholar 

  4. Balan, R.: Multiplexing of signals using superframes. In: Aldroubi, A., Laine, A. (Eds.) Wavelets and Applications in Signal and Image Processing VIII, SPIE Proceedings, vol. 4119, pp. 118–130 (2000)

  5. Bildea, S., Dutkay, D.E., Picioroaga, G.: MRA super-wavelets. New York J. Math. 11, 1–19 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

    MATH  Google Scholar 

  7. Cvetković, Z.: Overcomplete expansions for digital signal processing. Ph.D. dissertation, Univ. California, Berkeley (1995)

  8. Cvetković, Z., Vetterli, M.: Tight Weyl–Heisenberg frames in \(l^2(\mathbb Z)\). IEEE Trans. Signal Process. 46, 1256–1259 (1998)

    Article  MathSciNet  Google Scholar 

  9. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36, 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daubechies, I.: Ten Lectures on Wavelets. Capital City Press, Montpelier (1992)

    Book  MATH  Google Scholar 

  11. Dutkay, D.E.: The local trace function for super-wavelets. Wavelets, frames and operator theory. In: Contemp. Math., vol. 345, pp. 115-136. American Mathematical Society, Providence (2004)

  12. Dutkay, D.E., Jorgensen, P.: Oversampling generates super-wavelets. Proc. Am. Math. Soc. 135, 2219–2227 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms, Theory and Applications. Birkhäuser, Boston (1998)

    Book  MATH  Google Scholar 

  14. Feichtinger, H.G., Strohmer, T.: Advances in Gabor Analysis. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  15. Führ, H.: Simultaneous estimates for vector-valued Gabor frames of Hermite functions. Adv. Comput. Math. 29, 357–373 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  17. Gröchenig, K., Lyubarskii, Y.: Gabor (super)frames with Hermite functions. Math. Ann. 345, 267–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gu, Q., Han, D.: Super-wavelets and decomposable wavelet frames. J. Fourier Anal. Appl. 11, 683–696 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Han, D., Larson, D.: Frames, bases and group representations. Mem. Am. Math. Soc. 147(697), 94 pp. (2000)

    MathSciNet  Google Scholar 

  20. Heil, C.: A discrete Zak transform. Technical report MTR-89W00128 (1989)

  21. Janssen, A.J.E.M.: From continuous to discrete Weyl–Heisenberg frames through sampling. J. Fourier Anal. Appl. 3, 583–596 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Z.-Y., Han, D.: Constructing super Gabor frames: the rational time-frequency lattice case. Sci. China Math. 53, 3179–3186 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Y.-Z., Lian, Q.-F.: Gabor systems on discrete periodic sets. Sci. China Ser. A 52, 1639–1660 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Y.-Z., Lian, Q.-F.: Tight Gabor sets on discrete periodic sets. Acta Appl. Math. 107, 105–119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lian, Q.-F., Li, Y.-Z.: The duals of Gabor frames on discrete periodic sets. J. Math. Phys. 50, 013534, 22 pp. (2009)

    Article  MathSciNet  Google Scholar 

  26. Morris, J.M., Lu, Y.: Discrete Gabor expansions of discrete-time signals in \(l^2(\mathbb Z)\) via frame theory. Signal Process. 40, 155–181 (1994)

    Article  Google Scholar 

  27. Orr, R.S.: Derivation of the finite discrete Gabor transform by periodization and sampling. Signal Process. 34, 85–97 (1993)

    Article  MATH  Google Scholar 

  28. Søndergraard, P.L.: Gabor frame by sampling and periodization. Adv. Comput. Math. 27, 355–373 (2007)

    Article  MathSciNet  Google Scholar 

  29. Wexler, J., Raz, S.: Discrete Gabor expansions. Signal Process. 21, 207–221 (1990)

    Article  Google Scholar 

  30. Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao-Fang Lian.

Additional information

Communicated by Qiyu Sun.

Supported by the National Natural Science Foundation of China (Grant No. 10901013), Beijing Natural Science Foundation (Grant No. 1092001), the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No. KM201110005030), the Fundamental Research Funds for the Central Universities (Grant No. 2011JBM299).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YZ., Lian, QF. Super Gabor frames on discrete periodic sets. Adv Comput Math 38, 763–799 (2013). https://doi.org/10.1007/s10444-011-9259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9259-3

Keywords

Mathematics Subject Classification (2010)

Navigation