Skip to main content
Log in

Splitting and linearizing augmented Lagrangian algorithm for subspace recovery from corrupted observations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Given a set of corrupted data drawn from a union of multiple subspace, the subspace recovery problem is to segment the data into their respective subspace and to correct the possible noise simultaneously. Recently, it is discovered that the task can be characterized, both theoretically and numerically, by solving a matrix nuclear-norm and a ℓ2,1-mixed norm involved convex minimization problems. The minimization model actually has separable structure in both the objective function and constraint; it thus falls into the framework of the augmented Lagrangian alternating direction approach. In this paper, we propose and investigate an augmented Lagrangian algorithm. We split the augmented Lagrangian function and minimize the subproblems alternatively with one variable by fixing the other one. Moreover, we linearize the subproblem and add a proximal point term to easily derive the closed-form solutions. Global convergence of the proposed algorithm is established under some technical conditions. Extensive experiments on the simulated and the real data verify that the proposed method is very effective and faster than the sate-of-the-art algorithm LRR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distributed computation: numerical methods. PrenticeHall, Englewood Cliffs, NJ (1989)

    MATH  Google Scholar 

  2. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58, 1–37 (2011)

    Article  Google Scholar 

  5. Chen, C., He, B.S., Yuan, X.: Matrix completion via alternating direction method. IMA J. Numer. Anal. doi:10.1093/imanum/drq039

  6. Deng, W., Yin, W., Zhang, Y.: Group sparse optimization by alternating direction method. Avaiable at http://www.optimization-online.org/DB_HTML/2011/04/3006.html

  7. Duchi, J., Singer, Y.: Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 10, 2899–2934 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: IEEE Conference on Computer Vision and Pattern Recongnition, vol. 2, pp. 2970–2997 (2009)

  9. Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. TR. 09-31, CAM, UCLA. Available at ftp://ftp.math.ucla.edu/pub/camreport/cam09-31.pdf (2009)

  10. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  11. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet nonlinéaires. Revue Francaise d’automatique, informatique, recherche opéretionnelle. Analyse numérique 2, 41–76 (1975)

    MathSciNet  Google Scholar 

  12. Goldstein, T., Osher, S.: The split Bregman method for ℓ1-regularized problems. SIAM J. Imag. Sci. 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hale, E.T., Yin, W., Zhang., Y.: Fixed-point continuation for ℓ1-minimization: methodology and convergence. SIAM J. Optim. 19, 1107–1130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, B.S., Tao, M., Yuan, X.M.: A splitting method for separate convex programming with linking linear constraints. Available at http://www.optimization-online.org/DB_HTML/2010/06/2665.html

  15. He, B.S., Tao, M., Xu, M.H., Yuan, X.M.: Alternating directions based contraction method for generally separable linearly constrained convex programming problems. Available at http://www.optimization-online.org/DB_HTML/2009/11/2465.html

  16. He, B.S., Tao, M., Yuan, X.M.: A splitting method for separate convex programming with linking linear constraints. Available at http://www.optimization-online.org/DB_HTML/2010/06/2665.html

  17. He, B.S., Xu, M.H., Yuan, X.M.: Solving large-scale least squares semidefinite programming by alternating direction methods. SIAM. J. Matrix Anal. Appl. 32, 136–152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. Math. Program. Available at http://arxiv.org/abs/1009.5055

  19. Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., Ma, Y.: Fast convex optimization algorithm for exact recovery of a corrupted low-rank matrix. Available at http://yima.csl.illinois.edu/psfile/rpca_algorithms.pdf

  20. G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, Ma, Y.: Robust recovery of subspace structures by low-rank representation. Available at http://arxiv.org/abs/1010.2955

  21. Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program. doi:10.1007/s10107-009-0306-5

  22. Nesterov, Y.: A method of solving a convex programming proble with convergence rate O(1/k 2). Sov. Math., Dokl. 27, 372–376 (1983)

    MATH  Google Scholar 

  23. Rao, S., Tron, R., Vida, R., Ma, Y.: Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE Trans. Pattern Anal. 32, 1832–1845 (2010)

    Article  Google Scholar 

  24. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1998)

    Article  MathSciNet  Google Scholar 

  25. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math. Imag. Vis. 36, 168–184 (2010)

    Article  MathSciNet  Google Scholar 

  26. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Method. Softw. 11–12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  27. Sun, J., Zhang, S.: A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs. Eur. J. Oper. Res. 207, 1210–1220 (2010)

    Article  MATH  Google Scholar 

  28. Tao, M., Yuan, X.M.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21, 57–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. SIAM J. Optim. (2008, submitted)

  30. Tütüncü, R.H., Toh, K.C., Todd., M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. 95, 189–217 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imag. Sci. 1, 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wen, Z., Goldfard, D. W. Yin: Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Prog. Comp. 2, 203–230 (2010)

    Article  MATH  Google Scholar 

  33. Wright, J., Ma, Y., Ganesh, A., Rao, S.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Proceedings of the Conference on Neural Information Processing Systems (NIPS), 2009.

  34. Xiao, Y., Jin, Z.F.: An alternative direction method for linear constrained matrix nuclear norm minimization. Numer. Linear Algebra Appl. doi:10.1002/nla.783

  35. Xiao, Y., Song, H.N.: An inexact alternating directions algorithm for constrained total variation regularized compressive sensing problems. J. Math. Imag. Vis. doi:10.1007/s10851-011-0314-y

  36. Xiao, Y., Yang, J., Yuan, X.M.: Fast algorithms for total variation image reconstruction from random projections. Available at http://arxiv.org/abs/1001.1774v1

  37. Yang, J., Yuan, X.M.: Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization (submitted)

  38. Yang, J., Zhang, Y.: Alternating direction algorithms for ℓ1-problems in compressive sensing. SIAM J. Sci. Comput. 33, 250–278 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yuan, X.M., Yang, J.: Sparse and low-rank matrix decomposition via alternating direction methods. Pac. J. Optim. (2011, to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhai Xiao.

Additional information

Communicated by Lixin Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Y., Wu, SY. & Li, DH. Splitting and linearizing augmented Lagrangian algorithm for subspace recovery from corrupted observations. Adv Comput Math 38, 837–858 (2013). https://doi.org/10.1007/s10444-011-9261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9261-9

Keywords

Mathematics Subject Classifications (2010)

Navigation