Abstract
We consider a Jordan arc Γ in the complex plane \({\mathbb C}\) and a regular measure μ whose support is Γ. We denote by D the upper Hessenberg matrix of the multiplication by z operator with respect to the orthonormal polynomial basis associated with μ. We show in this work that, if the Hessenberg matrix D is uniformly asymptotically Toeplitz, then the symbol of the limit operator is the restriction to the unit circle of the Riemann mapping function ϕ(z) which maps conformally the exterior of the unit disk onto the exterior of the support of the measure μ. We use this result to show how to approximate the Riemann mapping function for the support of μ from the entries of the Hessenberg matrix D.
Similar content being viewed by others
References
Ahlfors, L.: Complex Analysis. McGraw-Hill (1979)
Arvenson, W.: A Short Course on Spectral Theory, Graduate Text in Mathematics, vol. 209. Spriger (2002)
Barría, J., Halmos, P.R.: Asymptotic Toeplitz operators. Trans. Am. Math. Soc. 92, 621–630 (1982)
Bello, M., López, G.: Ratio and relative asymptotics of polynomials orthogonal on an arc of the unit circle. J. Approx. Theory 92, 216–244 (1998)
Böttcher, A., Grudsky, S.M.: Spectral Properties of Banded Toeplitz Matrices. SIAM, Philadelphia (2005)
Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)
Conway, J.B.: A Course in Functional Analysis, Graduate Texts in Mathematics. Springer, New York (1985)
Conway, J.B.: The Theory of Subnormal Operators. Mathematical Surveys and Monographs, vol. 36. AMS, Providence, Rhode Island (1985)
Eirmann, M., Varga, R.S.: Zeros and local extreme points of Faber polynomials asoociated with Hypocycloidal Domains. Electron. Trans. Numer. Anal. 1, 49–71 (1993)
Escribano, C., Giraldo, A., Sastre, M.A., Torrano, E.: Hessenberg matrix for sums of Hermitian positive definite matrices and weighted shifts. J. Comput. Appl. Math. 236, 98–106 (2011)
Escribano, C., Giraldo, A., Sastre, M.A., Torrano, E.: Computing the Hessenberg matrix associated with a self-similar measure. J. Approx. Theory 163, 49–64 (2011)
Feintuch, A.: On asymptotic Toeplitz and Hankel operators. Oper. Theory Adv. Appl. 41, 241–254 (1989)
Freud, G.: Orthogonal Polynomials. Consultants Bureau, New York (1961)
Gaier, D.: Lectures on Complex Approximations. Birkhäuser, Boston (1985)
Geronimus, Ya.L.: Orthogonal Polynomials. Consultans Bureau, New York (1971)
Golinskii, L., Nevai, P., Van Assche, W.: Perturbation of orthogonal polynomials on an arc of the unit circle. J. Approx. Theory 83, 392–422 (1995)
Golinskii, L., Totik, V.: Orthogonal polynomials: from Jacobi to Simon. In: Deift, P., Gesztesy, F., Perry, P., Schlag, W. (eds.) Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Proceedings of Symposia in Pure Mathematics, vol. 76, pp. 821–874. Amer. Math. Soc., Providence, RI (2007)
Halmos, P.R.: Ten problems in Hilbert space. Bull. Amer. Math. Soc. 76, 887–933 (1970)
Jakimovski, A., Sharma, A., Szabados, J.: Walsh Equiconvergence of Complex Interpolating Polynomials. Springer (2006)
Lavréntiev, M.A., Shabat, B.V.: The Methods of Theory of Functions of Complex Variables (in Russian). Nauka, Moscow (1987)
Martínez Finkelshtein, A.: Equilibrium problems of potential theory in the complex plane. In: Marcellán, F., Van Assche, W. (eds.) Orthogonal Polynomials nad Special Functions. Lecture Notes in Mathematic, vol. 1886, pp. 79–117. Springer (2006)
Máté, A., Nevai, P., Totik, V.: Asymptotics for the ratio of leading coefficients of orthonormal polynomials on the unit circle. Constr. Approx. 1, 63–69 (1985)
Nevai, P.: Orthonormal Polynomials, vol. 213. Memoires. AMS, Providence (1979)
Pommerenke, C.: Univalent functions, Vandenhoeck and Ruprecht in Göttingen, Studia Mathematica (1975)
Rakhmanov, E.A.: On the asymptotics of the ratio of orthogonal polynomials. Math. USSR Sb 32, 199–213 (1977)
Rakhmanov, E.A.: On the asymptotics of the ratio of orthogonal polynomials II. Math. USSR Sb 47, 105–117 (1983)
Simon, B.: Orthogonal Polynomials on the Unit Circle, Part1: Classical Theory. AMS Colloquium Publications, American Mathematical Society, Providence, RI (2005)
Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory. AMS Colloquium Publications, American Mathematical Society, Providence, RI (2005)
Stahl, H., Totik, V.: General Orthogonal Polynomials. Cambridge University Press (1992)
Szegö, G.: Orthogonal Polynomials, 1st edn., 1939, 4th edn., vol. 32. American Mathematical Society, Coloquium Publications (1975)
Van Assche, W.: Rakhmanov’s theorem for orthogonal matrix polynomials on the unit circle. J. Approx. Theory 146, 227–242 (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Ivan Graham.
Rights and permissions
About this article
Cite this article
Escribano, C., Giraldo, A., Sastre, M.A. et al. The Hessenberg matrix and the Riemann mapping function. Adv Comput Math 39, 525–545 (2013). https://doi.org/10.1007/s10444-012-9291-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-012-9291-y