Skip to main content
Log in

On a two-grid finite element scheme for the equations of motion arising in Kelvin-Voigt model

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study a two level method based on Newton’s iteration for the nonlinear system arising from the Galerkin finite element approximation to the equations of motion described by the Kelvin-Voigt viscoelastic fluid flow model. The two-grid algorithm is based on three steps. In the first step, the nonlinear system is solved on a coarse mesh \(\mathcal {T}_{H}\) to obtain an approximate solution u H . In the second step, the nonlinear system is linearized around u H based on Newton’s iteration and the linear system is solved on a finer mesh \(\mathcal {T}_{h}\). Finally, in the third step, a correction to the results obtained in the second step is achieved by solving a linear problem with a different right hand side on \(\mathcal {T}_{h}\). Optimal error estimates in L (L 2)-norm, when \(h=\mathcal {O} (H^{2-\delta })\) and in L (1)-norm, when \(h=\mathcal {O}(H^{5-2\delta })\) for velocity and in L (L 2)-norm, when \(h=\mathcal {O}(H^{5-2\delta })\) for pressure are established, where δ > 0 is arbitrarily small for two dimensions and \(\delta =\frac {1}{2}\) for three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abboud, H., Sayah, T.: A full discretization of the time-dependent Navier-stokes equations by a two-grid scheme. M2AN. Math. Model. Numer. Anal. 42, 141–174 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abboud, H., Girault, V., Sayah, T.: A second order accuracy in time for a full discretized time-dependent Navier-Stokes equations by a two-grid scheme. Numer. Math. 114, 189–231 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bajpai, S., Nataraj, N., Pani, A.K., Damazio, P., Yuan, J.Y.: Semidiscrete Galerkin method for equations of motion arising in Kelvin-Voigt model of viscoelastic fluid flow. Numer. Methods Partial Diff. Equ. 29, 857–883 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bajpai, S., Nataraj, N., Pani, A.K.: On fully discrete finite element schemes for equations of motion of Kelvin-Voigt fluids. Int. J. Numer. Anal. Model. 10, 481–507 (2013)

    MathSciNet  Google Scholar 

  5. Burtscher, M., Szczyrba, I.: Numerical modeling of brain dynamics in traumatic situations—impulsive translations. In: The 2005 International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, pp. 205–211 (2005)

  6. Burtscher, M., Szczyrba, I.: Computational simulation and visualization of traumatic brain injuries. In: 2006 International Conference on Modeling, Simulation and Visualization Methods, pp. 101–107 (2006)

  7. Cotter, C.S., Smolarkiewicz, P.K., Szezyrba, I.N.: A viscoelastic model from brain injuries. Intl. J. Numer. Meth. Fluids 40, 303–311 (2002)

    Article  MATH  Google Scholar 

  8. Dai, X., Cheng, X.: A two-grid method based on Newton iteration for the Navier-Stokes equations. J. Comput. Appl. Math. 220, 566–573 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. de Frutos, J., Garca-Archilla, B., Novo, J.: Optimal error bounds for two-grid schemes applied to the Navier-Stokes equations. Appl. Math. Comput. 218, 7034–7051 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Girault, V., Lions, J.L.: Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Port. Math. (N.S.) 58, 25–57 (2001)

    MATH  MathSciNet  Google Scholar 

  11. Girault, V., Lions, J.L.: Two-grid finite-element schemes for the transient Navier-Stokes problem. M2AN. Math. Model. Numer. Anal. 35, 945–980 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem: I. Regularity of solutions and second order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem: IV Error Analysis For Second-Order Time Discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Karazeeva, N.A., Kotsiolis, A.A., Oskolkov, A.P.: Dynamical systems generated by initial-boundary value problems for equations of motion of linear viscoelastic fluids. Trudy Mat. Inst. Steklov 188, 59–87 (1990)

    MathSciNet  Google Scholar 

  15. Kaya, M., Çelebi, A.O.: Existence of weak solutions of the g-Kelvin-Voight equation. Math. Comput. Model. 49, 497–504 (2009)

    Article  MATH  Google Scholar 

  16. Layton, W.: A two-level discretization method for the Navier-Stokes equations. Comput. Math. Applic. 26, 33–38 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Layton, W., Lenferink, W.: Two-level Picard defect-corrections for the Navier-Stokes equations at high Reylonds number. Comput. Math. Appl. 69, 263–274 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Layton, W., Lenferink, W.: A multilevel mesh independence principle for the Navier-Stokes equations. SIAM J. Numer. Anal. 33, 17–30 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Layton, W., Tobiska, L.: A two level method with backtracking for the Navier-Stokes equations. SIAM J. Numer. Anal. 35, 2035–2054 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Oskolkov, A.P.: Initial-boundary value problems for equations of motion of Kelvin-Voigt fluids and Oldroyd fluids. Trudy Mat. Inst. Steklov 179, 126–164 (1987)

    MathSciNet  Google Scholar 

  21. Oskolkov, A.P.: On an estimate, uniform on the semiaxis t > 0, for the rate of convergence of Galerkin approximations for equations of motion of Kelvin-Voight fluids. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 82, 123–130 (1990)

    Google Scholar 

  22. Oskolkov, A.P., Shadiev, R.: On the theory of global solvability on 0, ) of initial-boundary value problems for equations of motion of Oldroyd fluids and Kelvin-Voigt fluids. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 180, 121–141 (1990)

    Google Scholar 

  23. Oskolkov, A.P.: Nonlocal problems for the equations of motion of the Kelvin-Voight fluids. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 197, 120–158 (1992)

    MATH  Google Scholar 

  24. Pani, A.K., Pany, A.K., Damázio, P., Yuan, J.Y.: A modified nonlinear spectral Galerkin method for the equations of motion arising in the Kelvin Voigt fluids. Appl. Anal. doi:10.1080/00036811.2013.841143 (2013)

    Google Scholar 

  25. Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland (1984)

  26. Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Xu, J.: Two-grid discretization techniques for linear and non linear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neela Nataraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajpai, S., Nataraj, N. & Pani, A.K. On a two-grid finite element scheme for the equations of motion arising in Kelvin-Voigt model. Adv Comput Math 40, 1043–1071 (2014). https://doi.org/10.1007/s10444-013-9340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-013-9340-1

Keywords

Mathematics Subject Classifications (2010)

Navigation