Skip to main content
Log in

Order-preserving derivative approximation with periodic radial basis functions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this exploratory paper we study the convergence rates of an iterated method for approximating derivatives of periodic functions using radial basis function (RBF) interpolation. Given a target function sampled on some node set, an approximation of the m th derivative is obtained by m successive applications of the operator “interpolate, then differentiate” - this process is known in the spline community as successive splines or iterated splines. For uniformly spaced nodes on the circle, we give a sufficient condition on the RBF kernel to guarantee that, when the error is measured only at the nodes, this iterated method approximates all derivatives with the same rate of convergence. We show that thin-plate spline, power function, and Matérn kernels restricted to the circle all satisfy this condition, and numerical evidence is provided to show that this phenomena occurs for some other popular RBF kernels. Finally, we consider possible extensions to higher-dimensional periodic domains by numerically studying the convergence of an iterated method for approximating the surface Laplace (Laplace-Beltrami) operator using RBF interpolation on the unit sphere and a torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. In: National Bureau of Standards Applied Mathematics Series, vol. 55. For Sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC (1964)

  2. Baxter, B.J.C., Hubbert, S.: Radial basis functions for the sphere. In: Recent Progress in Multivariate Approximation (Written-B ommerholz, 2000), International Series Numerical Mathematics, vol. 137, pp. 33–47. Basel, Birkhäuser (2001)

  3. Delvos, F.-J.: Approximation properties of periodic interpolation by translates of one function. RAIRO Modél. Math. Anal. Numér. 28(2), 177–188 (1994)

    MATH  MathSciNet  Google Scholar 

  4. Fasshauer, G.E.: Meshfree approximation methods with MATLAB. In: Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing Co. Pte. Ltd., Hackensack. With 1 CD-ROM (Windows, Macintosh and UNIX) (2007)

  5. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comp. 30, 60–80 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fuselier, E.J.: Nodes used in order-preserving approximation of derivatives with periodic radial basis functions. Accessed 2012. http://math.highpoint.edu/~efuselier/OrderPreservingData/

  7. Fuselier, E.J., Wright, G.B.: Scattered data interpolation on embedded submanifolds with restricted positive definite kernels: sobolev error estimates. SIAM J. Numer. Anal. 50(3), 1753–1776 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 56(3), 535–565 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lê Gia, Q.T.: Approximation of parabolic pdes on spheres using spherical basis functions. Adv. Comput. Math. 22, 377–397 (2005)

    Article  MathSciNet  Google Scholar 

  10. Golomb, M.: Approximation by periodic spline interpolants on uniform meshes. J. Approx. Theory 1, 26–65 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  11. González, Á.: Measurement of areas on a sphere using Fibonacci and latitude-longitude lattices. Math. Geosci. 42(1), 49–64 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hubbert, S., Müller, S.: Interpolation with circular basis functions. Numer. Algoritm. 42(1), 75–90 (2006)

    Article  MATH  Google Scholar 

  13. Levesley, J., Kushpel, A.K.: Generalised sk-spline interpolation on compact abelian groups. J. Approx. Theory 97(2), 311–333 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Light, W.A., Cheney, E.W.: Interpolation by periodic radial basis functions. J. Math. Anal. Appl. 168(1), 111–130 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lorentz, R.A., Narcowich, F.J., Ward, J.D.: Collocation discretizations of the transport equation with radial basis functions. Appl. Math. Comput. 145(1), 97–116 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Müller, C.: Spherical Harmonics, of Lecture Notes in Mathematics, vol. 17. Springer-Verlag, Berlin (1966)

    Google Scholar 

  17. Narcowich, F.J., Sun, X., Ward, J.D.: Approximation power of RBFs and their associated SBFs: a connection. Adv. Comput. Math. 27(1), 107–124 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ridley, J.N.: Ideal phyllotaxis on general surfaces of revolution. Math. Biosci. 79(1), 1–24 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shelley, M.J., Baker, G.R.: Order-preserving approximations to successive derivatives of periodic functions by iterated splines. SIAM J. Numer. Anal. 25(6), 1442–1452 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stöckler. J.: Multivariate Bernoulli splines and the periodic interpolation problem. Constr. Approx. 7(1), 105–122 (1991)

    Article  MathSciNet  Google Scholar 

  21. Watson, G.N.: A treatise on the theory of Bessel functions. In: Cambridge Mathematical Library. Cambridge University Press, Cambridge (1995). Reprint of the second (1944) edition

  22. Wendland, H.: Scattered Data Approximation, of Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  23. Womersley, R.S., Sloan, I.H.: Interpolation and Cubature on the Sphere. Accessed 2012. http://web.maths.unsw.edu.au/rsw/Sphere/

  24. Wright, G.B., Flyer, N., Yuen, D.: A hybrid radial basis function - pseudospectral method for thermal convection in a 3D spherical shell. Geochem. Geophys. Geosyst. 11, Q07003 (2010)

    Article  Google Scholar 

  25. Xu, Y., Cheney, E.W.: Strictly positive definite functions on spheres. Proc. Am. Math. Soc. 116(4), 977–981 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. zu Castell, W., Filbir, F.: Radial basis functions and corresponding zonal series expansions on the sphere. J. Approx. Theory 134(1), 65–79 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Fuselier.

Additional information

Communicated by: Robert Schaback

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuselier, E., Wright, G.B. Order-preserving derivative approximation with periodic radial basis functions. Adv Comput Math 41, 23–53 (2015). https://doi.org/10.1007/s10444-014-9348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9348-1

Keywords

Mathematical Subject Classifications (2010)

Navigation