Skip to main content
Log in

On general principles of eigenvalue localizations via diagonal dominance

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper suggests a unifying framework for matrix spectra localizations that originate from different generalizations of strictly diagonally dominant matrices. Although a lot of results of this kind have been published over the years, in many papers same properties were proven for every specific localization area using basically the same techniques. For that reason, here, we introduce a concept of DD-type classes of matrices and show how to construct eigenvalue localization sets. For such sets we then prove some general principles and obtain as corollaries many singular results that occur in the literature. Moreover, obtained principles can be used to construct and use novel Geršgorin-like localization areas. To illustrate this, we first prove a new nonsingularity result and then use established principles to obtain the corresponding localization set and its several properties. In addition, some new results on eigenvalue separation lines and upper bounds for spectral radius are obtained, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alanelli, M., Hadjidimos, A.: A new iterative criterion for H-matrices: the reducible case. Linear Algebra Appl. 428(11–12), 2761–2777 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beauwens, R.: Semistrict diagonal dominance. SIAM J. Numer. Anal. 13, 109–112 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences. Society for Industrial and Applied Mathematics, 2013/08/09 (1994)

  4. Bru, R., Cvetković, L., Kostić, V., Pedroche, F.: Characterization of α 1 and α 2-matrices. Cent. Eur. J. Math. 8, 32–40 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brualdi, R.: Matrices eigenvalues and directed graphs. Liner Multilinear Algebra 11, 143–165 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Clarkson, E., Kupinski, M.: Global compartmental pharmacokinetic models for spatiotemporal SPECT and PET imaging. SIAM J. Imaging Sci. 2(1), 203–225 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Corriou, J.-P.: Process Control - Theory and Applications. Springer-Verlag (2004)

  8. Cvetković, L.: H-matrix theory vs. eigenvalue localization. Numer. Algoritm. 42(3-4), 229–245 (2006)

    Article  MATH  Google Scholar 

  9. Cvetković, L., Kostić, V.: New criteria for identifying H-matrices. J. Comput. Appl. Math. 180(2), 265–278 (2005)

  10. Cvetković, L., Kostić, V.: New subclasses of block H-matrices with applications to parallel decomposition-type relaxation methods. Numer. Algoritm. 42(3-4), 325–334 (2006)

    Article  MATH  Google Scholar 

  11. Cvetković, L., Kostić, V.: A note on the convergence of the AOR method. Appl. Math. Comput. 194(2), 394–399 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cvetković, L., Kostić, V., Bru, R., Pedroche, F.: A simple generalization of Geršgorin’s theorem. Adv. Comput. Math. 35(2-4), 271–280 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cvetković, L., Kostić, V., Peña, J. M.: Eigenvalue localization refinements for matrices related to positivity. SIAM J. Matrix Anal. Appl. 32(3), 771–784 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cvetković, L., Kostić, V., Rauški, S.: A new subclass of H-matrices. Appl. Math. Comput. 208, 206–210 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cvetković, L., Kostić, V., Varga, R. S.: A new Geršgorin-type eigenvalue inclusion set. ETNA (Elec. Trans. Numer. An.) 18, 73–80 (2004)

    MATH  Google Scholar 

  16. Cvetkovic, L., Peña, J. M.: Minimal sets alternative to minimal Gershgorin sets. Appl. Numer. Math. 60(4), 442–451 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Datta, B.N.: Linear and numerical linear algebra in control theory: some research problems. Linear Algebra Appl., 755–790 (1994)

  18. Desplanques, J.: Thèorém d’algébre. J. de Math. Spec. 9, 12–13 (1887)

    Google Scholar 

  19. Elgrichi, Y., Zeheb, E.: Stability of multi-channel harmonic sound control systems with uncertainties. In: Nineteenth Convention of Electrical and Electronics Engineers in Israel, 1996, pp. 511–514 (1996)

  20. Fiedler, M., Pták, V.: On matrices with nonpositive diagonal elements and positive principal minors. Czech. Math. J. 12, 382–400 (1962)

    Google Scholar 

  21. Garcia, D., Karimi, A., Longchamp, R.: PID Controller Design for Multivariable Systems Using Gershgorin Bands. IFAC World Congress (2005)

  22. Geršgorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR Ser. Mat. 1, 749–754 (1931)

    Google Scholar 

  23. Hadamard, J.: Leçones sur la propagations des ondes. Hermann et fils, Paris, 1903. reprinted in 1949 by Chalsea, New York (1903)

  24. Hartman, J., Herman, A., Li, C.-K.: Preservers of eigenvalue inclusion sets. Linear Algebra Appl. 433(5), 1038–1051 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hoffman, A. J.: Gersgorin variations I: on a theme of Pupkov and Solovjev. Linear Algebra Appl. 304, 173–177 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hoffman, A. J.: Gersgorin variations II: on themes of Fan and Gudkov. Adv. Comput. Math. 25, 1–6 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Huang, T.-Z.: Stability criteria for matrices. Automatica 34(5), 637–639, 5 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Huang, T.-Z.: Iterative algorithm criterion for H-matrices. Int. J. Comput. Math. 81(2), 251–257 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Smoktunowicz, A., Kierzkowski, J.: Block normal matrices and Gershgorin-type discs. Electron. J. Linear Algebra 22, 1059–1069 (2011)

    MATH  MathSciNet  Google Scholar 

  30. James, K., Riha, W.: Convergence criteria for successive overrelaxation. SIAM J. Numer. Anal. 12, 137–143 (1974)

    Article  MathSciNet  Google Scholar 

  31. Levinger, B. W., Varga, R. S.: Minimal Gerschgorin sets II. Pac. J. Math. 17, 199–210 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lévy, L.: Sur le possibilitè du l’equlibre èlectrique. C. R. Acad. Paris 93, 706–708 (1881)

    Google Scholar 

  33. Li, C., Li, Y.: New regions including eigenvalues of Toeplitz matrices. Linear Multilinear Algebra 0(0), 1–13 (2013)

    Google Scholar 

  34. Liao, X., Yu, J.: Robust stability for interval Hopfield neural networks with time delay. IEEE Trans. Neural Netw. 9(5), 1042–1045 (1998)

    Article  Google Scholar 

  35. Marsli, R., Hall, F. J.: Further results on geršgorin discs. Linear Algebra Appl. 439(1), 189–195, 7 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Minkowski, H.: Zur Theorie der Einheiten in den algebraichen Zahlkörpern. Nachr. Königlichen Ges. Wiss. Göttingen, Math. - Phys. Kl. 90-93(1), 316–319 (1900)

    MathSciNet  Google Scholar 

  37. Neumann, M., Peña, J. M., Pryporova, O.: Some classes of nonsingular matrices and applications. Linear Algebra Appl. 438(4), 1936–1945 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ostrowski, A. M.: Über die Determinanten mit Überwiegender Hauptdiagonale. Coment. Math. Helv. 10, 69–96 (1937)

    Article  MathSciNet  Google Scholar 

  39. Ostrowski, A. M.: Über das Nichtverschwinden einer Klasse von Determinanten und die Lokalisierung der charakteristischen Wurzeln von Matrizen. Compositio Math. 9, 209–226 (1951)

    MATH  MathSciNet  Google Scholar 

  40. Ostrowski, A. M.: Solution of equations and systems of equations. Academic Press, New York (1960)

    MATH  Google Scholar 

  41. Palmer, K. J.: A sufficient condition that a matrix have eigenvalues with non-zero real parts. Linear Multilinear Algebra 7(1), 43–45 (1979)

    Article  MATH  Google Scholar 

  42. Pastravanu, O., Matcovschi, M.-H.: Diagonal stability of interval matrices and applications. Linear Algebra Appl. 433(8–10), 1646–1658 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  43. Pavel, L.: Game Theory for Control of Optical Networks. Static & Dynamic Game Theory: Foundations & Applications. Springer US (2012)

  44. Sequeira, T. N.: R&D spillovers in an endogenous growth model with physical capital, human capital, and varieties. Macroecon. Dyn. 4, 223–239 (2011)

    Article  Google Scholar 

  45. Taussky, O.: A recurring theorem on determinants. Am. Math. Mon. 56, 672 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  46. Trefethen, L. N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press (2005)

  47. Varga, R. S.: Minimal Gerschgorin sets. Pac. J. Math. 15, 719–729 (1965)

    Article  MATH  Google Scholar 

  48. Varga, R. S.: Gerschgorin disks, Brauer ovals of Cassini (a vindication), and Brualdi sets. Information 4, 171–178 (2001)

    MATH  MathSciNet  Google Scholar 

  49. Varga, R. S.: Gerschgorin-type eigenvalue inclusion theorems and their sharpness. ETNA (El. Trans. Numer. An.) 12, 113–133 (2001)

    MATH  Google Scholar 

  50. Varga, R. S.: Geršgorin and His Circles. Springer-Verlag, New York (2004)

    Book  MATH  Google Scholar 

  51. Varga, R. S., Cvetković, L., Kostić, V.: Aproximation of the minimal Geršgorin set of a square complex matrix. ETNA (Electron. Trans. Numer. Anal.) 40, 398–405 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kostić.

Additional information

Communicated by: R. Bru

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostić, V. On general principles of eigenvalue localizations via diagonal dominance. Adv Comput Math 41, 55–75 (2015). https://doi.org/10.1007/s10444-014-9349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9349-0

Keywords

Mathematics Subject Classifications (2010)

Navigation