Skip to main content
Log in

Numerical identification of a sparse Robin coefficient

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We investigate an inverse problem of identifying a Robin coefficient with a sparse structure in the Laplace equation from noisy boundary measurements. The sparse structure of the Robin coefficient γ is understood as a small perturbation of a reference profile γ 0 in the sense that their difference γγ 0 has a small support. This problem is formulated as an optimal control problem with an L 1-regularization term. An iteratively reweighted least-squares algorithm with an inner semismooth Newton iteration is employed to solve the resulting optimization problem, and the convergence of the iteratively weighted least-squares algorithm is established. Numerical results for two-dimensional problems are presented to illustrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Belgacem, F.B.: Why is the Cauchy problem severely ill-posed. Inverse Probl. 23(2), 823–836 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bissantz, N., Dümbgen, L., Munk, A., Stratmann, B.: Convergence analysis of generalized iteratively reweighted least squares algorithms on convex function spaces. SIAM J. Optim. 19(4), 1828–1845 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bonesky, T., Bredies, K., Lorenz, D.A., Maass, P.: A generalized conditional gradient method for nonlinear operator equations with sparsity constraints. Inverse Probl. 23(5), 2041–2058 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Casas, E., Clason, C., Kunisch, K.: Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control. Optim. 51(1), 28–63 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chaabane, S., Feki, I., Mars, N.: Numerical reconstruction of a piecewise constant Robin parameter in the two- or three-dimensional case. Inverse Probl. 28(6), 065016, 19 (2012)

    Article  MathSciNet  Google Scholar 

  7. Clason, C., Kunisch, K.: A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM Control. Optim. Calc. Var. 17(1), 243–266 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dacorogna, B.: Weak continuity and weak lower semicontinuity of nonlinear functionals. In: Lecture Notes in Mathematics, vol. 922. Springer-Verlag, Berlin (1982)

  9. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Comm. Pure Appl. Math. 63(1), 1–38 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fang, W., Cumberbatch, E.: Inverse problems for metal oxide semiconductor field-effect transistor contact resistivity. SIAM J. Appl. Math. 52(3), 699–709 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fang, W., Lu, M.: A fast collocation method for an inverse boundary value problem. Int. J. Numer. Methods Eng. 59(12), 1563–1585 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fasino, D., Inglese, G.: An inverse Robin problem for Laplace’s equation: theoretical results and numerical methods. Inverse Probl. 15(1), 41–48 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Geng, J., Shen, Z.: The Neumann problem and Helmholtz decomposition in convex domains. J. Funct. Anal. 259(8), 2147–2164 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Green, P.J.: Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. J. Roy. Statist. Soc. Ser. B. 46(2), 149–192 (1984). With discussion

    MATH  MathSciNet  Google Scholar 

  16. Griesse, R., Lorenz, D.A.: A semismooth Newton method for Tikhonov functionals with sparsity constraints. Inverse Probl. 24(3), 035007, 19 (2008)

    Article  MathSciNet  Google Scholar 

  17. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2002)

    Article  MathSciNet  Google Scholar 

  18. Inglese, G.: An inverse problem in corrosion detection. Inverse Probl. 13(4), 977–994 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Isakov, V.: Inverse Problems for Partial Differential Equations. Springer-Verlag, New York (1998)

    Book  MATH  Google Scholar 

  20. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  21. Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1), 161–219 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jin, B., Maass, P.: Sparsity regularization for parameter identification problems. Inverse Probl. 28(12), 123001, 70 (2012)

    Article  MathSciNet  Google Scholar 

  23. Jin, B., Zou, J.: Numerical estimation of piecewise constant Robin coefficient. SIAM J. Control Optim. 48(3), 1977–2002 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jin, B., Zou, J.: Numerical estimation of the Robin coefficient in a stationary diffusion equation. IMA J. Numer. Anal. 30(3), 677–701 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kreith, F. (Ed): The CRC Handbook of Thermal Engineering. CRC, Bota Raton (2000)

  26. Lai, M.-J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed q minimization. SIAM J. Numer. Anal. 51(2), 927–957 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lin, F., Fang, W.: A linear integral equation approach to the Robin inverse problem. Inverse Probl. 21(5), 1757–1772 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stadler, G.: Elliptic optimal control problems with L 1-control cost applications for the placement of control devices. Comput. Optim. Appl. 44(2), 159–181 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wolke, R., Schwetlick, H.: Iteratively reweighted least squares: algorithms, convergence analysis, and numerical comparisons. SIAM J. Sci. Statist. Comput. 9(5), 907–921 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiliang Lu.

Additional information

Communicated by: Y. Xu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Jiao, Y., Jin, B. et al. Numerical identification of a sparse Robin coefficient. Adv Comput Math 41, 131–148 (2015). https://doi.org/10.1007/s10444-014-9352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9352-5

Keywords

Mathematics Subject Classification (2010)

Navigation