Skip to main content
Log in

Second-order approximation and fast multigrid solution of parabolic bilinear optimization problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

An accurate and fast solution scheme for parabolic bilinear optimization problems is presented. Parabolic models where the control plays the role of a reaction coefficient and the objective is to track a desired trajectory are formulated and investigated. Existence and uniqueness of optimal solution are proved. A space-time discretization is proposed and second-order accuracy for the optimal solution is discussed. The resulting optimality system is solved with a nonlinear multigrid strategy that uses a local semismooth Newton step as smoothing scheme. Results of numerical experiments validate the theoretical accuracy estimates and demonstrate the ability of the multigrid scheme to solve the given optimization problems with mesh-independent efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addou, A. , Benbrik, A.: Existence and Uniqueness of Optimal Control for a Distributed-Parameter Bilinear System. J. Dyn. Control Syst. 8, 141–152 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Borzì, A., González Andrade, S.: Multigrid solution of a linear Lavrentiev-regularized state-constrained parabolic control problem, Numerical Mathematics. Theory Methods Appl. 5, 1–18 (2012)

    MATH  Google Scholar 

  3. Borzì, A., Kunisch, K.: A multigrid scheme for elliptic constrained optimal control problems. Comput. Optim. Appl. 31, 309–333 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borzì, A., Schulz, V.: Computational Optimization of Systems Governed by Partial Differential Equations,SIAM,Philadelphia,2012.

  5. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31, 333–390 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brzezniak, Z.: On smooth dependence of solutions od parabolic equations on coefficients. Univ. Iagellonicae Acta Math. 29, 7–17 (1992)

    MathSciNet  Google Scholar 

  7. Emmrich, E.: Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations. Comput. Methods Appl. Math. 9, 37–62 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19. American Mathematical Society, Providence (2002)

    Google Scholar 

  9. González Andrade, S., Borzì, A.: Multigrid second-order accurate solution of parabolic control-constrained problems. Comput. Optim. Appl. 51, 835–866 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods ,Wiley, (1995)

  11. Hackbusch, W.: Elliptic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  12. Hager, W.W., Zhang, H.: A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search. SIAM J. Optim. 16, 170–192 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hintermüller, M, Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Opt. 13, 865–888 (2003)

    Article  MATH  Google Scholar 

  14. Kärkkäinen, T.: Error estimates for distributed parameter identification in linear elliptic equations. J. Math. Sys. Estimation Control 6, 1–20 (1996)

    Google Scholar 

  15. Kärkkäinen, T.: Error estimates for distributed parameter identification in parabolic problems with output least squares and Crank-Nicolson method. Appl. Math. 42, 259–277 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kröner, A., Vexler, B.: A priori error estimates for elliptic optimal control problems with bilinear state equation. J. Comput. Applied Math. 230, 781—802 (2009)

    Article  Google Scholar 

  17. Kunisch, K., Tai, X.-C.: Sequential and Parallel Splitting Methods for Bilinear Control Problems in Hilbert Spaces, SIAM. J. Numer. Anal. 34, 91–118 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ladyzhenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasilinear equations of parabolic type, American Mathematical Society Translations. RI, Providence (1968)

    Google Scholar 

  19. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  20. Meserve, B.E.: Fundamental Concepts of Algebra. Dover Publications, USA (1982)

    Google Scholar 

  21. Mingione, G.: Regularity of minima: an invitation to the Dark Side of the Calculus of Variations. Appl. Math. 51, 355–426 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nash, J.: Continuity of solutions of parabolic and elliptic Equations. Am. J. Math. 80, pp.931–954 (1958)

    Article  MathSciNet  Google Scholar 

  23. Nittka, R. University of Ulm, PhD Thesis (2010)

  24. Press, W., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran: The Art of Scientific Computing. Cambridge University Press, USA (1997)

    Google Scholar 

  25. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, USA (2000)

    Google Scholar 

  26. Stadler, G: Semismooth Newton and augmented Lagrangian methods for a simplified friction problem, SIAM. J. Optim. 15, 39—62 (2004)

    MathSciNet  Google Scholar 

  27. Tagiev, R.K, Optimal coefficient control in parabolic systems. Diff. Equat. 45, 1526–1535 (2009)

    Article  MATH  Google Scholar 

  28. Tai, X.-C., Neittaanmäki, P.: Error estimates for numerical identification of distributed parameters. J. Comp. Math. 10, 66–78 (1992)

    MATH  Google Scholar 

  29. Tröltzsch, F.: Optimal Control of Partial Differential Equations. AMS, USA (2010)

    Book  Google Scholar 

  30. Trottenberg, U., Oosterlee, C., and Schüller, A.: Multigrid. Academic Press, London (2001)

    MATH  Google Scholar 

  31. Vallejos, M., and Borzì, A.: Multigrid optimization methods for linear and bilinear elliptic optimal control problems. Computing 82, pp. 31–52 (2008)

    Article  Google Scholar 

  32. Wloka, J. Cambridge University Press, Partial Differential Equations (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfio Borzì.

Additional information

Communicated by: M. Stynes

Supported in part by the European Union under Grant Agreement Nr. 304617 Marie Curie Research Training Network ‘Multi-ITN STRIKE - Novel Methods in Computational Finance’, and by BMBF Verbundproject 05M2013 ‘ROENOBIO: Robust energy optimization of fermentation processes for the production of biogas and wine’, and by EFP Research Fellowship awarded by the Program Committee of the IMU Berlin Einstein Foundation Program 2011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzì, A., González Andrade, S. Second-order approximation and fast multigrid solution of parabolic bilinear optimization problems. Adv Comput Math 41, 457–488 (2015). https://doi.org/10.1007/s10444-014-9369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9369-9

Keywords

AMS:

Navigation