Skip to main content
Log in

The reduced basis method in all-electron calculations with finite elements

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The reduced basis method successfully diminishes the required amount of degrees of freedom in the solution of a parameter dependent differential equation, and is applied in this work to the determination of the electronic structure with the Kohn-Sham equations in combination with the finite element method. It is thereby demonstrated, how the basis sizes in all-electron calculations can be essentially reduced, yielding new opportunities in the modeling of the electronic structure. In this context, a generalization of the reduced basis set construction is proposed and shown to increase the flexibility of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, F.F., Broughton, J.Q., Bernstein, N., Kaxiras, E.: Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. EPL 44(6), 783 (1998)

    Article  Google Scholar 

  2. Armero, F., Linder, C.: New finite elements with embedded strong discontinuities in the finite deformation range. Comput. Methods Appl. Mech. Eng. 197, 3138–3170 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Armero, F., Linder, C.: Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Int. J. Fract. 160, 119–141 (2009)

    Article  MATH  Google Scholar 

  4. Bowler, D. R., Miyazaki, T.: \(\mathcal {O}(N)\) methods in electronic structure calculations. Rep. Prog. Phys. 75(3), 036,503 (2012)

    Article  Google Scholar 

  5. Cancès, E., LeBris, C., Maday, Y., Turinici, G.: Towards reduced basis approaches in ab initio electronic structure computations. J. Sci. Comput. 17(1–4), 461–469 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Clementi, E.: Simple basis set for molecular wavefunctions containing first- and second-row atoms. J. Chem. Phys. 40(7), 1944–1945 (1964)

    Article  Google Scholar 

  7. Clementi, E., Raimondi, D.L.: Atomic screening constants from SCF functions. J. Chem. Phys. 38(11), 2686–2689 (1963)

    Article  Google Scholar 

  8. Goedecker, S.: Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085–1123 (1999)

    Article  Google Scholar 

  9. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964)

    Article  MathSciNet  Google Scholar 

  10. Kohn, W.: Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett. 76, 3168–3171 (1996)

    Article  Google Scholar 

  11. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133—A1138 (1965)

    Article  MathSciNet  Google Scholar 

  12. Lehtovaara, L., Havu, V., Puska, M.: All-electron density functional theory and time-dependent density functional theory with high-order finite elements. J. Chem. Phys. 131(5), 054103 (2009)

    Article  Google Scholar 

  13. Linder, C., Armero, F.: Finite elements with embedded strong discontinuities for the modeling of failure in solids. Int. J. Numer. Methods Engrg. 72(12), 1391–1433 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Linder, C., Armero, F.: Finite elements with embedded branching. Finite Elem. Anal. Des. 45, 280–293 (2009)

    Article  MathSciNet  Google Scholar 

  15. Linder, C., Raina, A.: A strong discontinuity approach on multiple levels to model solids at failure. Comput. Methods Appl. Mech. Eng. 253, 558–583 (2013)

    Article  MATH  Google Scholar 

  16. Linder, C., Zhang, X.: A marching cubes based failure surface propagation concept for three-dimensional finite elements with non-planar embedded strong discontinuities of higher-order kinematics. Int. J. Numer. Methods Engrg. 96, 339–372 (2013)

    Article  Google Scholar 

  17. Linder, C., Zhang, X.: Three-dimensional finite elements with embedded strong discontinuities to model failure in electromechanical coupled materials. Comput. Methods Appl. Mech. Eng. 273, 143–160 (2014)

    Article  MATH  Google Scholar 

  18. Maday, Y., Razafison, U.: A reduced basis method applied to the Restricted Hartree-Fock equations. C R Math 346, 243–248 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Martin, R.M.: Electronic Structure. Cambridge University Press (2004)

  20. Moès, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Engrg. 46(1), 131–150 (1999)

    Article  MATH  Google Scholar 

  21. Motamarri, P., Nowak, M.R., Leiter, K., Knap, J., Gavini, V.: Higher-order adaptive finite-element methods for Kohn-Sham density functional theory. J. Comp. Phys. 253, 308–343 (2013)

    Article  MathSciNet  Google Scholar 

  22. Ogata, S., Lidorikis, E., Shimojo, F., Nakano, A., Vashishta, P., Kalia, R. K.: Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers. Comput. Phys. Commun. 138(2), 143–154 (2001)

    Article  MATH  Google Scholar 

  23. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press (1989)

  24. Pask, J., Klein, B., Sterne, P., Fong, C.: Finite-element methods in electronic-structure theory. Comput. Phys. Commun. 135, 1 (2000)

    Article  Google Scholar 

  25. Pask, J.E., Sterne, P.A.: Finite element methods in ab initio electronic structure calculations. Modell. Simul. Mater Sci. Eng. 13, R71—R96 (2005)

    Article  Google Scholar 

  26. Patera, A.T., Rozza, G.: Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. MIT Pappalardo, Graduate Monographs in Mechanical Engineering (2006)

    Google Scholar 

  27. Pau, G.S.H.: Reduced Basis Method for Quantum Models of Crystalline Solids. Massachusetts Institute of Technology, PhD thesis (2007)

    Google Scholar 

  28. Pau, G.S.H.: Reduced basis method for simulation of nanodevices. Phys. Rev. B 78, 155,425 (2008)

    Article  Google Scholar 

  29. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximation. Phys. Rev. B 23, 5048 (1981)

    Article  Google Scholar 

  30. Perdew, J.P., Ruzsinszky, A., Tao, J., Staroverov, V.N., Scuseria, G.E., Csonka, G.I.: Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. J. Chem. Phys. 123(6), 062201 (2005)

    Article  Google Scholar 

  31. Pulay, P.: Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett. 73(2), 393–398 (1980)

    Article  Google Scholar 

  32. Saad Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics (2003)

  33. Saad, Y., Chelikowsky, J., Shontz, S.: Numerical methods for electronic structure calculations of materials. SIAM Rev. 52(1), 3–54 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schauer, V., Linder, C.: All-electron Kohn-Sham density functional theory on hierarchic finite element spaces. J. Comput. Phys. 250(0), 644–664 (2013)

    Article  Google Scholar 

  35. Schuchardt, K.L., Didier, B.T., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., Li, J., Windus, T.L.: Basis Set Exchange: A Community Database for Computational Sciences. J Chem Inf Model 47(3), 1045–1052 (2007). pMID: 17428029

    Article  Google Scholar 

  36. Strang G., Fix G., 2nd ed.: An Analysis of the Finite Element Method. Wellesley-Cambridge Press (1988)

  37. Sukumar, N., Pask, J.E.: Classical and enriched finite element formulations for Bloch-periodic boundary conditions. Int. J. Numer. Methods Engrg. 77(8), 1121–1138 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Szabó, A., Ostlund N. S.: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications (1996)

  39. Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and Theory. Springer (2005)

  40. Tsuchida, E., Tsukada, M.: Electronic-structure calculations based on the finite-element method. Phys. Rev. B 52, 5573–5578 (1995)

    Article  Google Scholar 

  41. Van Lenthe, E., Baerends, E.J.: Optimized Slater-type basis sets for the elements 1-118. J. Comput. Chem. 24(9), 1142–1156 (2003)

    Article  Google Scholar 

  42. Yamakawa, S., Hyodo, S.: Electronic state calculation of hydrogen in metal clusters based on Gaussian-FEM mixed basis function. J. Alloys. Compd. 356–357(0), 231–235 (2003)

    Article  Google Scholar 

  43. Yang, C., Meza, J.C., Wang, L.W.: A constrained optimization algorithm for total energy minimization in electronic structure calculation. J. Comp. Phys. 217, 709–721 (2005)

    Article  MathSciNet  Google Scholar 

  44. Yang, C., Meza, J.C., Wang, L.W.: A trust region direct constrained minimization algorithm for the Kohn-Sham equation. SIAM J. Sci. Comp. 29, 1854–1875 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Linder.

Additional information

Communicated by: Editors of Special Issue on MoRePas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schauer, V., Linder, C. The reduced basis method in all-electron calculations with finite elements. Adv Comput Math 41, 1035–1047 (2015). https://doi.org/10.1007/s10444-014-9374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9374-z

Keywords

Mathematics Subject Classification (2010)

Navigation