Skip to main content
Log in

Simulation of liquid crystal elastomers using Chebyshev spectral method with a new preconditioner

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Liquid crystal elastomers (LCEs) are soft complex materials of potential technological importance because of their remarkable responsiveness to excitations. In the previous work (Zhu et al. Phys. Rev. E 83, 051703 2011), we proposed a non-local continuum model to explore the dynamical behaviors of LCEs. The preliminary simulation demonstrated that the model can successfully capture the shape changing phenomena and other features of LCEs that were observed in real experiments (Camacho-Lopez et al. Nat. Mat. 3, 307–310 2004). However, due to the complexity of the governing equations, especially the velocity equation, the simulation is very time-consuming and thus efficient methods are imperatively needed. In this work, we propose a novel preconditioner for solving the velocity equation using Chebyshev spectral collocation method. Different from the well-known finite difference preconditioning (Orszag J. Comput. Phys. 37, 70–92 1980), the proposed preconditioner is constructed directly from the coefficient matrix of solving the velocity equation, without resorting to other operators such as the finite difference operator. With this preconditioner, very few inner iterations are needed when solving the resulting large scale linear system using GMRES method (Saad and Schultz SIAM J. Sci. STAT. Comput. 7(3), 856–869 1986). The experiments validate the efficiency of the proposed preconditioner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acher, U.R., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for timedependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MathSciNet  Google Scholar 

  2. Brand, H.R., Pleiner, H.: Electrohydrodynamics of nematic liquid crystalline elastomers. Physica A 208, 359–372 (1994)

    Article  Google Scholar 

  3. Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P., Shelley, M.: Fast liquid crystal elastomer swims into the dark. Nat. Mat. 3, 307–310 (2004)

    Article  Google Scholar 

  4. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer-Verlag (2006)

  5. de Gennes, P.G.: Reflexions sur un type de polymeres nematiques. C. R. Acad. Sci., Ser. B 281, 101–103 (1975)

    Google Scholar 

  6. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. Oxford University Press, Oxford (1993)

    Google Scholar 

  7. Demaret, P., Deville, M.: Chebyshev pseudospectral solution of the Stokes equations using finite element preconditioning. J. Comput. Phys. 83, 463–484 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deville, M.O., Mund, E.H.: Finite element preconditioning for pseudospectral solutions of elliptic problems. SIAM J. Sci. Statist. Comput. 11, 311–342 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Deville, M.O., Mund, E.H.: Fourier analysis of finite element preconditioning collocation schemes. SIAM J. Sci. Statist. Comput. 13, 596–610 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ennis, R., Malacarne, L.C., Palffy-Muhoray, P., Shelley, M.: Nonlocal model for nematic liquid-crystal elastomers. Phys. Rev. E 74, 061802 (2006)

    Article  Google Scholar 

  11. Finkelmann, H., Kock, H., Rehage, G.: Investigations on lc polysiloxanes: Liquid crystalline elastomers a new type of liquid crystalline material. Makromol. Chem. Rapid Commun. 2, 317 (1981)

    Article  Google Scholar 

  12. Gustafsson, B., Kreiss, H. O., Oliger. J.: Time Dependent Problems and Difference Methods. John Wiley, New York (1995)

    MATH  Google Scholar 

  13. Haldenwang, P., Labrosse, G., Abboudi, S., Deville, M.: Chebyshev 3-d and 2-d pseudospectral solvers for the Helmholtz equation. J. Comput. Phys. 55, 115–128 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kim, S.D., Parter, S.V.: Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations. SIAM J. Numer. Anal. 33, 2375–2400 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kim, S.D., Parter, S.V.: Preconditioning Chebyshev spectral collocation by finite-difference operators. SIAM J. Numer. Anal. 34, 939–958 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Holzapfel, G.: Nonlinear Solid Mechanics. Wiley, Chichester (2000)

    MATH  Google Scholar 

  17. Labrosse, G.: The piecewise-linear finite volume scheme: the best known lowest-order preconditioner for the d 2/d x 2 Chebyshev spectral operator. J. Comput. Phys. 228, 4491–4509 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37, 70–92 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  19. Peyret, R.: Spectral methods for incompressible viscous flow. Springer-Verlag, New York (2002)

    Book  MATH  Google Scholar 

  20. Saad, Y.: Ilut: A dual threshold incomplete lu factorization. Numer. Linear Appl. 1(4), 387–402 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Saad, Y.: Iterative Methods for sparse linear systems. SIAM (2003)

  22. Saad, Y., Schultz, M.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. STAT. Comput. 7(3), 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shen, J., Wang, F., Xu, J.: A finite element multigrid preconditioner for Chebyshev-collocation methods. Appl. Numer. Math. 33, 471–477 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Selinger, R.L.B., Mbanga, B.L., Selinger, J.V.: Modeling liquid crystal elastomers: actuators, pumps, and robots SPIE Proceedings, 6911 (2008)

  25. Warner, M., Teretjev, E. M.: Liquid Crystal Elastomers. Clarendon Press, Oxford (2003)

    Google Scholar 

  26. Yu, Y., Nakano, M., Ikeda, T.: Photomechanics: Directed bending of a polymer film by light. Nature 425, 145 (2003)

    Article  Google Scholar 

  27. Zhu, W., Shelley, M., Palffy-Muhoray, P.: Modeling and simulation on liquid crystal elastomers. Phys. Rev. E 83, 051703 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhu.

Additional information

Communicated by: Silas Alben

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W. Simulation of liquid crystal elastomers using Chebyshev spectral method with a new preconditioner. Adv Comput Math 41, 853–879 (2015). https://doi.org/10.1007/s10444-014-9389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9389-5

Keywords

Mathematics Subject Classifications (2010)

Navigation