Skip to main content
Log in

A posteriori error analysis of multipoint flux mixed finite element methods for interface problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the multipoint flux mixed finite element method is used to approximate the flux of two-dimensional elliptic interface problems. Within the class of modified quasi-monotonically distributed coefficients, we derive uniformly robust residual-type a posteriori error estimators for the flux error. Based on the residual-type estimator, we further develop robust implicit and explicit recovery-type estimators through gradient recovery in H(curl) conforming finite element spaces. Numerical experiments are presented to support the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42(6), 2320–2341 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M.: A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements. SIAM J. Sci. Comput. 30, 189–204 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85, 579–608 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fortin, F., Brezzi, M.: Mixed and hybrid finite element methods, vol. 15 of Springer Series in Computational Mathematics. Springer Verlag, Berlin (1991)

    MATH  Google Scholar 

  5. Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: Conforming linear elements. SIAM J. Numer. Anal. 47, 2132–2156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, Z., Zhang, S.: Recovery-based error estimators for interface problems: Mixed and nonconforming finite elements. SIAM J. Numer. Anal. 48, 30–52 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, Z., Zhang, S.: Robust equilibrated residual error estimator for diffusion problems: Conforming elements. SIAM J. Numer. Anal. 50(1), 151–170 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carstensen, C: A posteriori error estimate for the mixed finite method. Math. Comp. 66, 465–476 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P. G.: The finite element method for elliptic problems. Nort-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  10. Ciarlet, P. G.: Basic error estimates for elliptic problems. North-Holland, Amsterdam (1991)

    Book  MATH  Google Scholar 

  11. Demlow, A., Hirani, A.: A posteriori error estimates for finite elemnt exterior calculus: The deRham complex. Found. Comput. Math. 14(6), 1337–1371 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dryja, M., Sarkis, M. V., Widlund, O. B.: Multilevel Schwarz methods for elliptic probelms with discontinuous coefficients in three dimensions. Numer. Math. 72, 313–348 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, S.H.: A new residual posteriori error estimates of mixed finite element methods for convection-diffusion-reaction equations. Numer. meth. PDE 30, 593–624 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, S.H., Sun, S.Y., Xie, X.P.: Residual-based a posteriori error estimation for multipoint flux mixed finite element methods. Numer. Math. (2015). doi:10.1007/s00211-015-0770-1

    MathSciNet  Google Scholar 

  15. Girault, V., Raviart, P. A.: Finite element methods for Navier-Stokes equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  16. Luce, B.R., Wohlmuth, I.: A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42, 1394–1414 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nedelec, J.C.: Mixed finite eleemnts in \(\mathfrak {R}^{3}\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  18. Nedelec, J.C.: A new family of mixed finite elements in \(\mathfrak {R}^{3}\). Numer. Math. 50, 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ovall, J.S.: Two Dangers to Avoid When Using Gradinet Recovery Methods for Finite Element Error Estimation and Adaptivity, Technical report, vol. 6. Max-Planck-Institute fur Mathematick in den Naturwissenschaften, Bonn, Germanny (2006)

    Google Scholar 

  20. OVALL, J. S.: Fixing a “Bug” in Recovery-type A Posteriori Error Estimators, Technical report, vol. 25. Max-Planck-Institute fur Mathematick in den Naturwissenschaften, Bonn, Germanny (2006)

    Google Scholar 

  21. Petzoldt, M: A posteriori error estimators for elliptic equations with discontinuous coeffcients. Adv. Comput. Math. 16, 47–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Raviart, R.A., Thomas, J.M.: A mixed finite element method for 2nd orderelliptic problems, in Mathematical aspects of the finite element method, lecture notes in mathematics, vol. 606, pp 292–315. Springer-Verlag, NewYork (1977)

    Google Scholar 

  23. Vohralík, M.: Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coeffients. J. Sci. Comput. 46(3), 397–438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Verfürth, R: A posteriori error estimates and adaptive mesh-refinment techniques. J. Comput. Appl. Math. 50, 67–83 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Verfürth, R: A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comp. 62, 445–475 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu, J.: Counterexamples concerning a weighted L 2 projection. Math. Comp. 57, 563–568 (1991)

    MathSciNet  MATH  Google Scholar 

  27. Wheeler, M.F., Yotov, I.: A posteriori error estimates for the mortar mixed finite element method. SIAM J. Numer. Anal. 43, 1021–1042 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method. SIAM. J. Numer. Anal. 44, 2082–2106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ingram, R., Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method on hexahedra. SIAM J. Numer. Anal. 48, 1281–1312 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, Z.: Recovery techniques in finite element methods. In: Tang, T., Xu, J. (eds.) Adaptive Computations: Theory and algorithms, Mathematics Monogr. Ser. 6, pp 333–412. Science Publisher, New York (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohong Du.

Additional information

Communicated by: Martin Stynes

This research is supported in part by the National Natural Science Foundation of China under grants 91430216, 11471031, and 11428103, the US National Science Foundation under grants DMS-1419040 and DMS-1217268, and a University Research Grant of Texas A&M International University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Lin, R. & Zhang, Z. A posteriori error analysis of multipoint flux mixed finite element methods for interface problems. Adv Comput Math 42, 921–945 (2016). https://doi.org/10.1007/s10444-015-9447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9447-7

Keywords

Mathematics Subject Classfication (2010)