Skip to main content

New approximations to the principal real-valued branch of the Lambert W-function

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The Lambert W-function is the solution to the transcendental equation W(x)e W(x) = x. It has two real branches, one of which, for x ∈ [−1/e, ∞], is usually denoted as the principal branch. On this branch, the function grows from − 1 to infinity, logarithmically at large x. The present work is devoted to the construction of accurate approximations for the principal branch of the W-function. In particular, a simple, global analytic approximation is derived that covers the whole branch with a maximum relative error smaller than 5 × 10−3. Starting from it, machine precision accuracy is reached everywhere with only three steps of a quadratically convergent iterative scheme, here examined for the first time, which is more efficient than standard Newton’s iteration at large x. Analytic bounds for W are also constructed, for x > e, which are much tighter than those currently available. It is noted that the exponential of the upper bounding function yields an upper bound for the prime counting function π(n) that is better than the well-known Chebyshev’s estimates at large n. Finally, the construction of accurate approximations to W based on Chebyshev spectral theory is discussed; the difficulties involved are highlighted, and methods to overcome them are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barry, D.A., Barry, S.J., Culligan-Hensley, P.J.: Algorithm 743: WAPR: A FORTRAN routine for calculating real values of the W-function. ACM Trans. Math. Softw. 21(2), 172–181 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barry, D.A., Culligan-Hensley, P.J., Barry, S.J.: Real values of the W-function. ACM Trans. Math. Softw. 21(2), 161–171 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barry, D.A., Li, L., Jeng, D.S.: Comments on “numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2”. IEEE Trans. Signal Process. 106(10), 1456–1458 (2004)

    Article  MATH  Google Scholar 

  4. Barry, D.A., Parlange, J.Y., Li, L., Prommer, H., Cunningham, C.J., Stagnitti, E.: Analytical approximations for real values of the lambert W-function. Math. Comput. Simul. 53(1-2), 95–103 (2000)

    Article  MathSciNet  Google Scholar 

  5. Borwein, J.M., Corless, R.M.: Emerging tools for experimental mathematics. Amer. Math. Mon. 106(10), 889–909 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyd, J.P.: Orthogonal rational functions on a semi- infinite interval. J. Comput. Phys. 70, 63–88 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyd, J.P.: Global approximations to the principal real-valued branch of the Lambert W-function. Appl. Math. Lett. 11(6), 27–31 (1998). Errata: in Eq. (4), 11/36 should be \(\sqrt 2 11/36\)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boyd, J.P.: Chebyshev and fourier spectral methods, p 680. Dover, New York (2001)

    Google Scholar 

  9. Boyd, J.P.: Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation. Appl. Math. Comput. 143, 189–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyd, J.P.: Computing zeros on a real interval through Chebyshev expansion and polynomial rootfinding. SIAM J. Numer. Anal. 40(5), 1666–1682 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyd, J.P.: Solving transcendental equations: The Chebyshev polynomial proxy and other numerical rootfinders, perturbation series and oracles, p 460. SIAM, Philadelphia (2014)

    Book  MATH  Google Scholar 

  12. De Bruijn, N.G.: Asymptotic methods in analysis, 3rd edn. Dover, New York (1981)

    MATH  Google Scholar 

  13. Chapeau-Blondeau, F., Monir, A.: Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 50(9), 2160–2165 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Comtet, L.: Advanced combinatorics: The art of finite and infinite expansions. Reidel, Amsterdam (1974)

    Book  MATH  Google Scholar 

  15. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5(4), 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Corless, R.M., Jeffrey, D.J.: The Lambert W function. In: Higham, N. (ed.) Princeton Companion to Applied Mathematics. Princeton University Press, New Jersey (2015)

    Google Scholar 

  17. Dubinov, A.E., Dubinova, I.D.: How can one solve exactly some problems in plasma theory. J. Plasma Phys. 71, 715–728 (2005)

    Article  Google Scholar 

  18. Dusart, P.: Inegalites explicites pour ψ(x), θ(x), π(x) et nombres premiers. C. R. Math. Acad. Sci. Soc. R. Can. 21(2), 53–59 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Euler, L.: De serie lambertina plurimis queeius insignibus proprietatibus (on the remarkable properties of a series of lambert and others) Opera Omnia (Series 1)[de L. Euler], no. 6 in Eulers Collected Works. Originally publsished in Acta Academiae Scientarum Imperialis Petropolitinae, 1779, 2951, pp 350–369. Imperial Printer, St. Petersberg (1779)

    Google Scholar 

  20. Franca, G., LeClair, A.: Transcendental equations satisfied by the individual zeros of Riemann ζ, Dirichlet and modular L-functions. arXiv:1502.06003 (2015)

  21. Fritsch, F.N., Shafer, R.E., Crowley, W.P.: Algorithm 443: Solution of the transcendental equation w exp(w) = x. Commun. ACM 16, 123–124 (1973)

    Article  Google Scholar 

  22. Fukushima, T.: Precise and fast computation of Lambert W-functions without transcendental function evaluations. J. Comput. Appl. Math. 244, 77–89 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gautschi, W.: The Lambert W-functions and some of their integrals: a case study of high-precision computation. Numer. Algorithm. 57(1), 27–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hoofar, A., Hassani, M.: Inequalities on the Lambert W-function and hyperpower function. Int. J. Inequaltities Pure Appl. Math. 9(2), article 51, 5 (2008)

  25. Houai, A.: Some analytical results in physics using the Lambert W function. Math. Sci. 40(1), 29–34 (2015)

    MathSciNet  Google Scholar 

  26. Kalugin, G., Jeffrey, D., Corless, R.: Bernstein, Pick, Poisson and related integral expressions for Lambert W. Integr. Trans. Spec. Funct. 23(11), 817825 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kalugin, G., Jeffrey, D., Corless, R., Borwein, P.B.: Stieltjes and other integral representations for functions of Lambert W. Integr. Trans. Spec. Funct. 23 (8), 581593 (2011)

    MathSciNet  Google Scholar 

  28. Kalugin, G.A., Jeffrey, D.J.: Series transformations to improve and extend convergence. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing: 12th CASC Workshop, Lecture Notes in Computer Science, pp 134–147. Springer (2010)

  29. Lambert, J.H.: Observationes variae in mathesin puram. Acta Helvetica, Physico-mathematico-anatomic0-botanica-medica 3, 128–168 (1758)

    Google Scholar 

  30. Luo, Q., Wang, Z., Han, J.: A Pade approximant approach to two kinds of transcendental equations with applications in physics. Euroopean J. Phys. 36(3). aticle no. 035,030 (19)

  31. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST handbook of mathematical functions. Cambridge University Press, New York (2010)

  32. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6(1), 64–94 (1962)

    MathSciNet  MATH  Google Scholar 

  33. Shafer, R.E.: On quadratic approximation. SIAM J. Numer. Anal. 11, 447–460 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  34. Siewert, C.E., Burniston, E.E.: Exact analytical solutions of z exp(z) = a. J. Math. Anal. Applics 43, 626–632 (1973)

    Article  MATH  Google Scholar 

  35. Sturmfels, B.: Solving systems of polynomial equations CBMS regional conference series, vol. 97. American Mathematical Society, Providence, Rhode Island (2002)

    Book  Google Scholar 

  36. Veberic, D.: Lambert W function for applications in physics. Comput. Phys. Commun. 183(12), 26222628 (2012)

    Article  MathSciNet  Google Scholar 

  37. Visser, M.: Primes and the Lambert function. arXiv:1311.2324

  38. Wright, E.M.: Solution of the equation z exp(z) = α. Bull. Am. Math. Soc. 65, 89–93 (1959)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Rob Corless, David Jeffrey, and an anonymous reviewer for useful comments on the original manuscript, and André LeClair for bringing Ref. [20] to their attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Iacono.

Additional information

Communicated by: Gitta Kutyniok

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacono, R., Boyd, J.P. New approximations to the principal real-valued branch of the Lambert W-function. Adv Comput Math 43, 1403–1436 (2017). https://doi.org/10.1007/s10444-017-9530-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9530-3

Keywords

Mathematics Subject Classification (2010)