Skip to main content
Log in

Low dissipative entropy stable schemes using third order WENO and TVD reconstructions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A low dissipative framework is given to construct high order entropy stable flux by addition of suitable numerical diffusion operator into entropy conservative flux. The framework is robust in the sense that it allows the use of high order reconstructions which satisfy the sign property only across the discontinuities. The third order weighted essentially non-oscillatory (WENO) interpolations and high order total variation diminishing (TVD) reconstructions are shown to satisfy the sign property across discontinuities. Third order accurate entropy stable schemes are constructed by using third order WENO and high order TVD reconstructions procedures in the diffusion operator. These schemes are efficient and less diffusive since the diffusion is actuated only in the sign stability region of the used reconstruction which includes discontinuities. Numerical results with constructed schemes for various test problems are given which show the third order accuracy and less dissipative nature of the schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laney, C.B.: Computational gasdynamics. Cambridge University Press, Cambridge (1998). https://doi.org/10.1017/CBO9780511605604

    Book  MATH  Google Scholar 

  2. LeVeque, R.J.: Finite volume methods for hyperbolic problems, vol. 31. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  3. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin (2009). https://doi.org/10.1007/b79761

    Book  MATH  Google Scholar 

  4. Evans, L.: Partial differential equations, Graduate studies in mathematics. American Mathematical Society, USA (1998)

    Google Scholar 

  5. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comp. 49, 91–103 (1987). https://doi.org/10.1090/S0025-5718-1987-0890255-3

    Article  MathSciNet  MATH  Google Scholar 

  6. LeFloch, P.G., Rohde, C.: High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal. 37(6), 2023–2060 (2000). https://doi.org/10.1137/S0036142998345256

    Article  MathSciNet  MATH  Google Scholar 

  7. LeFloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitraryorder. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002). https://doi.org/10.1137/S003614290240069X

    Article  MathSciNet  MATH  Google Scholar 

  8. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, S0962492902000156 (2003). https://doi.org/10.1017/S0962492902000156

    Article  MathSciNet  Google Scholar 

  9. Merriam, M.L.: An entropy-based approach to nonlinear stability. Technical Report NASA-TM-101086, NASA Ames Research Center, Moffett Field (1989)

    Google Scholar 

  10. Tadmor, E., Zhong, W.: Novel entropy stable schemes for 1D and 2D fluid equations, pp 1111–1119. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-75712-2_119

    MATH  Google Scholar 

  11. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009). https://doi.org/10.1016/j.jcp.2009.04.021

    Article  MathSciNet  MATH  Google Scholar 

  12. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible euler and navier-stokes equations. Commun. Comput. Phys. 14(05), 1252–1286 (2013). https://doi.org/10.4208/cicp.170712.010313a

    Article  MathSciNet  MATH  Google Scholar 

  13. Berthon, C., Desveaux, V.: An entropy preserving MOOD scheme for the Euler equations. International Journal on Finite Volumes. 11, 1–39 (2014)

  14. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012). https://doi.org/10.1137/110836961

    Article  MathSciNet  MATH  Google Scholar 

  15. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, H.: On wavewise entropy inequalities for high-resolution schemes. I: The semidiscrete case. Math. Comput. Amer. Math. Soc. 65(213), 45–67 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Osher, S., Tadmor, E.: On the convergence of difference approximations to scalar conservation laws. Math. Comput. 50(181), 19–51 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, pp 325–432. Springer, Berlin (1998). https://doi.org/10.1007/BFb0096355

    MATH  Google Scholar 

  20. Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13(2), 139–159 (2013). https://doi.org/10.1007/s10208-012-9117-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Fjordholm, U.S., Ray, D.: A Sign Preserving WENO Reconstruction Method, Journal of Scientific Computing. https://doi.org/10.1007/s10915-015-0128-y

  22. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains. J. Comput. Phys. 252, 518–557 (2013). https://doi.org/10.1016/j.jcp.2013.06.014. http://www.sciencedirect.com/science/article/pii/S0021999113004385

    Article  MathSciNet  MATH  Google Scholar 

  23. Zakerzadeh, H., Fjordholm, U.S.: High-order accurate, fully discrete entropy stable schemes for scalar conservation laws, IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/drv020. http://imajna.oxfordjournals.org/content/early/2015/05/19/imanum.drv020.abstract

  24. Tadmor, E.: Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discret. Contin. Dyn. Syst. 36 (8), 4579–4598 (2016). https://doi.org/10.3934/dcds.2016.36.4579. http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=12366

    Article  MathSciNet  MATH  Google Scholar 

  25. Barth, T.: Numerical methods for gasdynamic systems on unstructured meshes. In: Kröner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Vol. 5 of Lecture Notes in Computational Science and Engineering, pp 195–285. Springer, Berlin Heidelberg (1999). https://doi.org/10.1007/978-3-642-58535-7_5

  26. Shu, C.W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009). https://doi.org/10.1137/070679065

    Article  MathSciNet  MATH  Google Scholar 

  27. Yamaleev, N.K., Carpenter, M.H.: Third-order energy stable WENO scheme. J. Comput. Phys. 228(8), 3025–3047 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Harten, A., Lax, P.D.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21(1), 1–23 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Toro, E., Billett, S.J.: Centred TVD schemes for hyperbolic conservation laws. IMA J. Numer. Anal. 20(1), 47–79 (2000). https://doi.org/10.1093/imanum/20.1.47

    Article  MathSciNet  MATH  Google Scholar 

  30. Goodman, J.B., LeVeque, R.J.: A geometric approach to high resolution TVD schemes. SIAM J. Numer. Anal. 25, 268–284 (1988). https://doi.org/10.1137/0725019

    Article  MathSciNet  MATH  Google Scholar 

  31. Kemm, F.: A comparative study of TVD limiters well known limiters and an introduction of new ones. Int. J. Numer. Methods Fluids 67(4), 404–440 (2011). https://doi.org/10.1002/fld.2357

    Article  MathSciNet  MATH  Google Scholar 

  32. Dubey, R.K.: Flux limited schemes: Their classification and accuracy based on total variation stability regions. Appl. Math. Comput. 224, 325–336 (2013). https://doi.org/10.1016/j.amc.2013.08.027

    MathSciNet  MATH  Google Scholar 

  33. Zhang, D., Jiang, C., Liang, D., Cheng, L.: A review on TVD schemes and a refined flux-limiter for steady-state calculations. J. Comput. Phys. 302, 114–154 (2015). https://doi.org/10.1016/j.jcp.2015.08.042

    Article  MathSciNet  MATH  Google Scholar 

  34. Koren, B.: A robust upwind discretization method for advection, diffusion and source terms. Numerical methods for advection-diffusion problems, pp 117–138 (1993)

  35. Kuzmin, D.: On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection. J. Comput. Phys. 219(2), 513–531 (2006). https://doi.org/10.1016/j.jcp.2006.03.034

    Article  MathSciNet  MATH  Google Scholar 

  36. Gottlieb, S., Shu, C. -W.: Total variation diminishing runge-kutta schemes. Math. Comput. 67(221), 73–85 (1998). https://doi.org/10.1090/S0025-5718-98-00913-2

    Article  MathSciNet  MATH  Google Scholar 

  37. Fjordholm, U., Mishra, S., Tadmor, E.: Energy preserving and energy stable schemes for the shallow water equations. In: Cucker, F., Pinkus, A., Todd, M. J. (eds.) Foundations of Computational Mathematics, Hong Kong 2008, pp 93–139. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9781139107068.005

  38. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978). https://doi.org/10.1016/0021-9991(78)90023-2

    Article  MathSciNet  MATH  Google Scholar 

  39. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7(1), 159–193 (1954). https://doi.org/10.1002/cpa.3160070112

    Article  MathSciNet  MATH  Google Scholar 

  40. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988). https://doi.org/10.1016/0021-9991(88)90177-5

    Article  MathSciNet  MATH  Google Scholar 

  41. Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differ. Equat. 18(5), 584–608 (2002). https://doi.org/10.1002/num.10025

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Authors are greatly thankful to anonymous reviewers for their technical comments and constructive suggestions which helped to improve the overall manuscript. We also acknowledge Science and Engineering Research Board, India for providing necessary funds for Mr. Biswarup through SERB Project EMR/2016/000394.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar Dubey.

Additional information

Communicated by: Jean-Frédéric Gerbeau

Carried out work is supported through DST-SERB India project EMR/2016/000394.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, B., Dubey, R.K. Low dissipative entropy stable schemes using third order WENO and TVD reconstructions. Adv Comput Math 44, 1153–1181 (2018). https://doi.org/10.1007/s10444-017-9576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9576-2

Keywords

Mathematics Subject Classification (2010)