Abstract
A low dissipative framework is given to construct high order entropy stable flux by addition of suitable numerical diffusion operator into entropy conservative flux. The framework is robust in the sense that it allows the use of high order reconstructions which satisfy the sign property only across the discontinuities. The third order weighted essentially non-oscillatory (WENO) interpolations and high order total variation diminishing (TVD) reconstructions are shown to satisfy the sign property across discontinuities. Third order accurate entropy stable schemes are constructed by using third order WENO and high order TVD reconstructions procedures in the diffusion operator. These schemes are efficient and less diffusive since the diffusion is actuated only in the sign stability region of the used reconstruction which includes discontinuities. Numerical results with constructed schemes for various test problems are given which show the third order accuracy and less dissipative nature of the schemes.
Similar content being viewed by others
References
Laney, C.B.: Computational gasdynamics. Cambridge University Press, Cambridge (1998). https://doi.org/10.1017/CBO9780511605604
LeVeque, R.J.: Finite volume methods for hyperbolic problems, vol. 31. Cambridge University Press, Cambridge (2002)
Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin (2009). https://doi.org/10.1007/b79761
Evans, L.: Partial differential equations, Graduate studies in mathematics. American Mathematical Society, USA (1998)
Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comp. 49, 91–103 (1987). https://doi.org/10.1090/S0025-5718-1987-0890255-3
LeFloch, P.G., Rohde, C.: High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal. 37(6), 2023–2060 (2000). https://doi.org/10.1137/S0036142998345256
LeFloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitraryorder. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002). https://doi.org/10.1137/S003614290240069X
Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, S0962492902000156 (2003). https://doi.org/10.1017/S0962492902000156
Merriam, M.L.: An entropy-based approach to nonlinear stability. Technical Report NASA-TM-101086, NASA Ames Research Center, Moffett Field (1989)
Tadmor, E., Zhong, W.: Novel entropy stable schemes for 1D and 2D fluid equations, pp 1111–1119. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-75712-2_119
Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009). https://doi.org/10.1016/j.jcp.2009.04.021
Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible euler and navier-stokes equations. Commun. Comput. Phys. 14(05), 1252–1286 (2013). https://doi.org/10.4208/cicp.170712.010313a
Berthon, C., Desveaux, V.: An entropy preserving MOOD scheme for the Euler equations. International Journal on Finite Volumes. 11, 1–39 (2014)
Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012). https://doi.org/10.1137/110836961
Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)
Yang, H.: On wavewise entropy inequalities for high-resolution schemes. I: The semidiscrete case. Math. Comput. Amer. Math. Soc. 65(213), 45–67 (1996)
Osher, S., Tadmor, E.: On the convergence of difference approximations to scalar conservation laws. Math. Comput. 50(181), 19–51 (1988)
Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)
Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, pp 325–432. Springer, Berlin (1998). https://doi.org/10.1007/BFb0096355
Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13(2), 139–159 (2013). https://doi.org/10.1007/s10208-012-9117-9
Fjordholm, U.S., Ray, D.: A Sign Preserving WENO Reconstruction Method, Journal of Scientific Computing. https://doi.org/10.1007/s10915-015-0128-y
Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains. J. Comput. Phys. 252, 518–557 (2013). https://doi.org/10.1016/j.jcp.2013.06.014. http://www.sciencedirect.com/science/article/pii/S0021999113004385
Zakerzadeh, H., Fjordholm, U.S.: High-order accurate, fully discrete entropy stable schemes for scalar conservation laws, IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/drv020. http://imajna.oxfordjournals.org/content/early/2015/05/19/imanum.drv020.abstract
Tadmor, E.: Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discret. Contin. Dyn. Syst. 36 (8), 4579–4598 (2016). https://doi.org/10.3934/dcds.2016.36.4579. http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=12366
Barth, T.: Numerical methods for gasdynamic systems on unstructured meshes. In: Kröner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Vol. 5 of Lecture Notes in Computational Science and Engineering, pp 195–285. Springer, Berlin Heidelberg (1999). https://doi.org/10.1007/978-3-642-58535-7_5
Shu, C.W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009). https://doi.org/10.1137/070679065
Yamaleev, N.K., Carpenter, M.H.: Third-order energy stable WENO scheme. J. Comput. Phys. 228(8), 3025–3047 (2009)
Harten, A., Lax, P.D.: On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21(1), 1–23 (1984)
Toro, E., Billett, S.J.: Centred TVD schemes for hyperbolic conservation laws. IMA J. Numer. Anal. 20(1), 47–79 (2000). https://doi.org/10.1093/imanum/20.1.47
Goodman, J.B., LeVeque, R.J.: A geometric approach to high resolution TVD schemes. SIAM J. Numer. Anal. 25, 268–284 (1988). https://doi.org/10.1137/0725019
Kemm, F.: A comparative study of TVD limiters well known limiters and an introduction of new ones. Int. J. Numer. Methods Fluids 67(4), 404–440 (2011). https://doi.org/10.1002/fld.2357
Dubey, R.K.: Flux limited schemes: Their classification and accuracy based on total variation stability regions. Appl. Math. Comput. 224, 325–336 (2013). https://doi.org/10.1016/j.amc.2013.08.027
Zhang, D., Jiang, C., Liang, D., Cheng, L.: A review on TVD schemes and a refined flux-limiter for steady-state calculations. J. Comput. Phys. 302, 114–154 (2015). https://doi.org/10.1016/j.jcp.2015.08.042
Koren, B.: A robust upwind discretization method for advection, diffusion and source terms. Numerical methods for advection-diffusion problems, pp 117–138 (1993)
Kuzmin, D.: On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection. J. Comput. Phys. 219(2), 513–531 (2006). https://doi.org/10.1016/j.jcp.2006.03.034
Gottlieb, S., Shu, C. -W.: Total variation diminishing runge-kutta schemes. Math. Comput. 67(221), 73–85 (1998). https://doi.org/10.1090/S0025-5718-98-00913-2
Fjordholm, U., Mishra, S., Tadmor, E.: Energy preserving and energy stable schemes for the shallow water equations. In: Cucker, F., Pinkus, A., Todd, M. J. (eds.) Foundations of Computational Mathematics, Hong Kong 2008, pp 93–139. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9781139107068.005
Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978). https://doi.org/10.1016/0021-9991(78)90023-2
Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7(1), 159–193 (1954). https://doi.org/10.1002/cpa.3160070112
Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988). https://doi.org/10.1016/0021-9991(88)90177-5
Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differ. Equat. 18(5), 584–608 (2002). https://doi.org/10.1002/num.10025
Acknowledgments
Authors are greatly thankful to anonymous reviewers for their technical comments and constructive suggestions which helped to improve the overall manuscript. We also acknowledge Science and Engineering Research Board, India for providing necessary funds for Mr. Biswarup through SERB Project EMR/2016/000394.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Jean-Frédéric Gerbeau
Carried out work is supported through DST-SERB India project EMR/2016/000394.
Rights and permissions
About this article
Cite this article
Biswas, B., Dubey, R.K. Low dissipative entropy stable schemes using third order WENO and TVD reconstructions. Adv Comput Math 44, 1153–1181 (2018). https://doi.org/10.1007/s10444-017-9576-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-017-9576-2