Skip to main content
Log in

A numerical method for solving the time fractional Schrödinger equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, we proposed a new numerical method to obtain the approximation solution for the time-fractional Schrödinger equation based on reproducing kernel theory and collocation method. In order to overcome the weak singularity of typical solutions, we apply the integral operator to both sides of differential equation and yield a integral equation. We divided the solution of this kind equation into two parts: imaginary part and real part, and then derived the approximate solutions of the two parts in the form of series with easily computable terms in the reproducing kernel space. New bases of reproducing kernel spaces are constructed and the existence of approximate solution is proved. Numerical examples are given to show the accuracy and effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nigmatullin, R.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi 133(1), 425–430 (1986)

    Article  MathSciNet  Google Scholar 

  2. Friedrich, C.: Relaxation functions of rheological constitutive equations with fractional derivatives: thermodynamical constraints. Rheological Model.: Thermodynamical Stat. Approaches 14(8), 321–330 (1991)

    MATH  Google Scholar 

  3. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: A finite element method for the fractional Sturm-Liouville Problem[J]. Mathematics 40(3), 512–8 (2013)

    Google Scholar 

  5. Jin, B., Lazarov, R., et al.: Error estimates for approximations of distributed order time fractional diffusion with nonsmooth Data[J]. Fractional Calculus Appl. Anal. 19(1), 69–93 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Jin, B., Lazarov, R., et al.: The Galerkin finite element method for a multi-term time-fractional diffusion equation[J]. J. Comput. Phys. 281, 825–843 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jiang, W., Chen, Z.: Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl. Math. Comput. 219, 10225–10230 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Xu, M.Q., Lin, Y.Z.: Simplified reproducing kernel method for fractional differential equations with delay. Appl. Math. Lett. 52, 156–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, W., Lin, Y.: Approximate solution of the fractional advection-dispersion equation. Comput. Phys. Commun. 181, 557–561 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rozmej, P., Bandrowski, B.: On fractional Schrodinger equation. Comput. Method Sci. Tech. 16, 191–4 (2010)

    Article  Google Scholar 

  11. Adda, B.F., Cresson, J.: Fractional differential equations and the Schrodinger equation. Appl. Math. Comput. 161, 45–323 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Garrappa, R., Moret, I., Popolizio, M.: Solving the time-fractional Schröinger equation by Krylov projection methods. J. Comput. Phys. 293, 115–134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan, M., Taleei, A.: A compact split-step finite difference method for solving the nonlinear Schrodinger equations with constant and variable coefficients. Comput. Phys. Commun. 181, 43–51 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wei, L., He, Y., Zhang, X., Wang, S.: Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation. Finite Elem. Anal. Des. 59, 28–34 (2012)

    Article  MathSciNet  Google Scholar 

  15. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics. Eng. Anal. Boundary Element 37, 475–485 (2013)

    Article  MATH  Google Scholar 

  16. Ozawa, T., Sunagawa, H.: Small data blow-up for a system of nonlinear Schrödinger equations[J]. J. Math. Anal. Appl. 399(1), 147–155 (2012)

    Article  MATH  Google Scholar 

  17. Merle, F., Raphael, P., Rodnianski, I.: Blow up dynamics for smooth data equivariant solutions to the critical schrödinger map problem[J]. Invent. Math. 193(2), 249–365 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Glassey, R.T.: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations[J]. J. Math. Phys. 18(9), 1794–1797 (1976)

    Article  MATH  Google Scholar 

  19. Besse, C., Carles, R., Mauser, N.J., et al.: Monotonicity properties of the blow-up time for nonlinear Schr\(\ddot {\mathrm {o}}\)dinger equations: numerical evidence[J]. Discrete Cont. Dyn. Syst. - Ser. B 1(1), 11–36 (2008)

    MATH  Google Scholar 

  20. Aronszain, N.: Theory of reproducing kernels, transactions of the american mathematical society. Trans. Am. Math. Soc. 68(3), 337–404 (1950)

    Article  Google Scholar 

  21. Cui, M., Lin, Y.: Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science Publisher, New York (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang.

Additional information

Communicated by: Martin Stynes

The authors would like to express their thanks to the unknown referees for their careful reading, helpful comments and valuable suggestions. The work was supported by the National Natural Science Foundation of China (Grant No. 11401139) and State Scholarship Fund (File No.201706125045).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Jiang, W. A numerical method for solving the time fractional Schrödinger equation. Adv Comput Math 44, 1235–1248 (2018). https://doi.org/10.1007/s10444-017-9579-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9579-z

Keywords

Mathematics Subject Classification (2010)

Navigation