Skip to main content
Log in

Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Based on the partition of unity method (PUM), a local and parallel finite element method is designed and analyzed for solving the stationary incompressible magnetohydrodynamics (MHD). The key idea of the proposed algorithm is to first solve the nonlinear system on a coarse mesh, divide the globally fine grid correction into a series of locally linearized residual problems on some subdomains derived by a class of partition of unity, then compute the local subproblems in parallel, and obtain the globally continuous finite element solution by assembling all local solutions together by the partition of unity functions. The main feature of the new method is that the partition of unity provide a flexible and controllable framework for the domain decomposition. Finally, the efficiency of our theoretical analysis is tested by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69, 881–909 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Adv. Comput. Math. 14, 293–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms for eigenvalue problems. Acta Math. Appl. Sinica. 18, 185–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. He, Y.N., Xu, J.C., Zhou, A.H., et al.: Local and parallel finite element algorithms for the Stokes problem. Numer. Math. 109, 415–434 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. He, Y.N., Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms for the Navier-Stokes problem. J. Comput. Math. 24, 227–238 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Shang, Y.Q., He, Y.N.: A parallel Oseen-linearized algorithm for the stationary Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 209, 172–183 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Shang, Y.Q., He, Y.N.: Parallel iterative finite element algorithms based on full domain partition for the stationary Navier-Stokes equations. Appl. Numer. Math. 60, 719–737 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. He, Y.N., Mei, L.Q., Shang, Y.Q., et al.: Newton iterative parallel finite element algorithm for the steady Navier-Stokes equations. J. Sci. Comput. 44, 92–106 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tang, Q.L., Huang, Y.Q.: Local and parallel finite element algorithm based on Oseen-type iteration for the stationary incompressible MHD flow. J. Sci. Comput. 70, 149–174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, Y.H., Hou, Y.R., Shan, L., Dong, X.J.: Local and parallel finite element algorithm for stationary incompressible magnetohydrodynamics. Numer. Meth. PDE. 33, 1513–1539 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, C., Huang, Z., Li, L.: Two-grid partition of unity method for second order elliptic problems. Appl. Math. Mech. -Engl. Ed 29, 527–533 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yu, J.P., Shi, F., Zheng, H.B.: Local and parallel finite element algorithms based on the partition of unity for the Stokes problem. SIAM J. Sci. Comput. 36, C547–C567 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zheng, H.B., Yu, J.P., Shi, F.: Local and parallel finite element algorithm based on the partition of unity for incompressible flows. J. Sci. Comput. 65, 512–532 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zheng, H.B., Shi, F., Hou, Y.R., et al.: New local and parallel finite element algorithm based on the partition of unity. J. Math. Anal. Appl. 435, 1–19 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Melenk, J., Babuška, I.: The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139, 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Babuška, I., Melenk, J.: The partition of unity method. Int. J. Numer. Methods Enrg. 40, 727–758 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Holst, M.: Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15, 139–191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Holst, M.: Applications of domain decomposition and partition of unity methods in physics and geometry (plenary paper). In: Herrera, I., Keyes, D.E., Widlund, O.B., Yates, R. (eds.) Proceedings of the Fourteenth International Conference on Domain Decomposition Methods, pp 63–78. Cocoyoc, Mexico City (2002)

  19. Huang, Y.Q., Xu, J.C.: A conforming finite element method for overlapping and nonmatching grids. Math. Comput. 72, 1057–1066 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bacuta, C., Sun, J., Zheng, C.: Partition of unity refinement for local approximation. Numer. Meth. PDE. 27, 803–817 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Du, G.Z., Hou, Y.R., Zuo, L.Y.: Local and parallel finite element methods for the mixed Navier-Stokes/Darcy Model. Int. J. Comp. Math. 93, 1155–1172 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hou, Y.R., Du, G.Z.: An expandable local and parallel two-grid finite element scheme. Comput. Math. Appl. 71, 2541–2556 (2016)

    Article  MathSciNet  Google Scholar 

  23. Gunzburger, M.D., Meir, A.J., Peterson, J.S.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics. Math. Comput. 56, 523–563 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moreau, R.: Magneto-hydrodynamics. Kluwer Academic Publishers, USA (1990)

    Google Scholar 

  25. Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2006)

    MATH  Google Scholar 

  26. Greif, C., Li, D., Schötzau, D., Wei. X.X.: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 199, 2840–2855 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96, 771–800 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Salah, N.B., Soulaimani, A., Habashi, W.G.: A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 190, 5867–5892 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Su, H.Y., Feng, X.L., Huang, P.Z.: Iterative methods in penalty finite element discretization for the steady MHD equations. Comput. Methods Appl. Mech. Engrg. 304, 521–545 (2016)

    Article  MathSciNet  Google Scholar 

  30. Planas, R., Badia, S., Codina, R.: Approximation of the inductionless MHD problem using a stabilized finite element method. J. Comput. Phys. 230, 2977–2996 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Layton, W.J., Meir, A.J., Schmidt, P.G.: A two-level discretization method for the stationary MHD equations. Elec. Tran. Numer. Anal. 6, 198–210 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Dong, X.J., He, Y.N.: Two-level Newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics. J. Sc. Comput. 63, 426–451 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dong, X.J., He, Y.N.: Convergence of some finite element iterative methods related to different Reynolds numbers for the 2D/3D stationary incompressible magnetohydrodynamics. Sci. China Math. 59, 589–608 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hu, K.B., Ma, Y.C., Xu, J.C.: Stable finite element methods preserving ∇⋅B = 0 exactly for MHD models. Numer. Math. 135, 371–396 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Cai, W., Hu, J., Zhang, S.Y.: High order hierarchical divergence-free constrained transport h(d i v) finite element method for magnetic induction equation. Numerical Mathematics Theory Methods & Applications. https://doi.org/10.4208/nmtma.2017.s03 (2017)

  36. Ma, Y.C., Hu, K.B., Hu, X.Z., Xu, J.C.: Robust preconditioners for incompressible MHD models. J. Comput. Phy. 316, 721–746 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, L.X., Zheng, W.Y.: A robust solver for the finite element approximation of stationary incompressible MHD equations in 3D. J. Comput. Phy. 351, 254–270 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem III: Smoothing property and high order error estimates for spatial discretization. SIAM J. Numer. Anal. 25, 489–512 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dong, X.J., He, Y.N., Zhang, Y.: Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 276, 287–311 (2014)

    Article  MathSciNet  Google Scholar 

  40. Sermane, M., Temam, R.: Some mathematics questions related to the MHD equations. Comm. Pure Appl. Math. XXXIV, 635–664 (1984)

    Google Scholar 

  41. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Fortin, M.: Calcul Numérique des Ecoulements Fluides de Bingham et des Fluides Newtoniens Incompressible par des Méthodes D’eléments Finis. Université de Paris VI, Doctoral Thesis (1972)

  43. Hood, P., Taylor, C.: A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mansfield, L.: Finite element subspaces with optimal rates of convergence for stationary Stokes problem. RAIRO Anal. Numér. 16, 49–66 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nolen, J., Papanicolaou, G., Pironneau, O.: A framework for adaptive multiscale methods for elliptic problems. Multiscale Model Simul. 7, 171–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hecht, F., Pironneau, O., Ohtsuka, K.: FreeFEM++. http://www.freefem.org/ (2011)

Download references

Acknowledgments

The author would like to thank the referees and the editor for the helpful suggestions. The research was supported by the National Natural Science Foundation of China (Grant No: 11701151,11771348,11401174), and the Major Research and Development Program of China (Grant No. 2016YFB0200901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinnian He.

Additional information

Communicated by: Ilaria Perugia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., He, Y., Wei, H. et al. Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow. Adv Comput Math 44, 1295–1319 (2018). https://doi.org/10.1007/s10444-017-9582-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9582-4

Keywords

Mathematics Subject Classification (2010)

Navigation