Skip to main content
Log in

The nonconforming virtual element method for the Navier-Stokes equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper a unified nonconforming virtual element scheme for the Navier-Stokes equations with different dimensions and different polynomial degrees is described. Its key feature is the treatment of general elements including non-convex and degenerate elements. According to the properties of an enhanced nonconforming virtual element space, the stability of this scheme is proved based on the choice of a proper velocity and pressure pair. Furthermore, we establish optimal error estimates in the discrete energy norm for velocity and the L2 norm for both velocity and pressure. Finally, we test some numerical examples to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crouzeix, M., Raviart, P. A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Serie Rouge 7, 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  2. Chen, Z, Douglas, J.: Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems. Mat. Aplic. Comp. 10, 137–160 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Crouzeix, M., Falk, R. S.: Nonconforming finite elements for the Stokes problem. Math. Comp. 52, 437–456 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fortin, M., Soulie, M.: A non-conforming piecewise quadratic finite element on triangles. Int. J. Numer. Meth. Eng. 19, 505–520 (1983)

    Article  MATH  Google Scholar 

  5. Matthies, G., Tobiska, L.: Inf-sup stable non-conforming finite elements of arbitrary order on triangles. Numer. Math. 102, 293–309 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baran, A. E., Stoyan, G.: Gauss-Legendre elements: a stable, higher order non-conforming finite element family. Computing 79, 1–21 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Stoyan, G., Baran, A. E.: Crouzeix-Velte decompositions for higher-order finite elements. Comput. Math. Appl. 51, 967–986 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z.: BDM mixed methods for a nonlinear elliptic problem. J. Comput. Appl. Math. 53, 207–223 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, Z., Douglas, J., Ye, X.: A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo 36, 215–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Matthies, G.: Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra. ESAIM-Math. Model Num. 41, 855–874 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Meth. Part. D E. 8, 97–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fortin, M.: A three-dimensional quadratic nonconforming element. Numer. Math. 46, 269–279 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karakashian, O. A., Jureidini, W. N.: Nonconforming finite element method for the stationary Navier-Stokes equations. SIAM J. Numer. Anal. 35, 93–120 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., Russo, A.: Basic principles of virtual element methods. Math. Mod. Meth. Appl. Sci. 23, 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM-Math. Model Num. 50, 879–904 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cangiani, A., Manzini, G., Sutton, O. J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37, 1317–1354 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Brezzi, F., Marini, L. D.: Virtual element method and discontinuous Galerkin methods. In: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations (Feng, X. B., Karakashian, Ohannes, Xing, Y. L., Editors), Lecture Notes in The IMA Volumes in Mathematics and its Applications, vol. 157, pp. 209–221. Springer (2014)

  18. Brezzi, F., Falk, R. S., Marini, L. D.: Basic principles of mixed virtual element method. ESAIM-Math. Model Num. 48, 1227–1240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brezzi, F., Lipnikov, K., Shashkov, M., Simoncini, V.: A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Eng. 196, 3682–3692 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43, 1872–1896 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cangiani, A., Manzini, G., Russo, A.: Convergence analysis of a mimetic finite difference method for general second-order elliptic problems. SIAM J. Numer. Anal. 47, 2612–2637 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hyman, J., Shashkov, M.: Mimetic discretizations for Maxwells equations and the equations of magnetic diffusion. Prog Electromagn. Res. 32, 89–121 (2001)

    Article  Google Scholar 

  23. Campbell, J., Shashkov, M.: A tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys. 172, 739–765 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113, 325–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lipnikov, K., Morel, J., Shashkov, M.: Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes. J. Comput. Phys. 199, 589–597 (2004)

    Article  MATH  Google Scholar 

  26. Ahmed, B., Alsaedi, A., Brezzi, F., Marini, L. D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Beirão da Veiga, L., Dassi, F., Russo, A.: High-order Virtual Element Method on polyhedral meshes. Comput. Math. with App. 74, 1110–1122 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Beirão da Veiga, L., Brezzi, F., Marini, L. D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Mod. Meth. Appl. Sci. 24, 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Meth. Part. D E. 31, 2110–2134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Brezzi, F., Marini, L. D.: Virtual element method for plate bending problems. Comput. Methods Appl. Mech. Engrg. 253, 455–462 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Antonietti, P. F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52, 386–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM-Math. Model Num. 51, 509–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54, 3411–3435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, X., Li, J., Chen, Z.: A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech. Engrg. 320, 694–711 (2017)

    Article  MathSciNet  Google Scholar 

  35. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual Elements for the Navier-Stokes problem on polygonal meshes, arXiv:1703.00437

  36. Benedetto, M. F., Berrone, S., Pieraccini, S., Scialo, S.: The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Engrg. 280, 135–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Beirão da Veiga, L., Brezzi, F., Marini, L. D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51, 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gain, A. L., Talischi, C., Paulino, G. H.: On the virtual element method for three-dimensional elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 282, 132–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Girault, V., Raviart, P.: Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986)

    Book  MATH  Google Scholar 

  40. Chen, Z.: Finite element methods and their applications, Scientific Computation. Springer, Berlin (2005)

    Google Scholar 

  41. Brenner, S. C., Scott, L. R.: The mathematical theory of finite element methods, Texts in Applied Mathematics. Springer, Berlin (2008)

    Book  Google Scholar 

  42. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1994)

    MATH  Google Scholar 

  43. Anderson, J. D.: Computational fluid dynamics: the basics with applications. McGraw Hill, New York (1995)

    Google Scholar 

  44. Beirão da Veiga, L., Brezzi, F., Marini, L. D., Russo, A.: Virtual element methods for general second order elliptic problems on polygonal meshes. Math. Mod. Meth. Appl. Sci. 26, 729–750 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mora, D., Rivera, G., Rodriguez, R.: A virtual element method for the steklov eigenvalue problem. Math. Mod. Meth. Appl. Sci. 25, 1421–1445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mascotto, L.: A therapy for the ill-conditioning in the Virtual Element Method, arXiv:1705.10581

  47. Manzini, G., Cangiani, A., Sutton, O.: The conforming virtual element method for the convection-diffusion-reaction equation with variable coeffcients, Los Alamos National Laboratory, LA-UR-14-27710. https://doi.org/10.2172/1159207 (2014)

  48. Adak, D., Natarajan, E.: A unified analysis of nonconforming virtual element methods for convection diffusion reaction problem, arXiv:1601.01077

  49. Roos, H. G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems, Springer Science Business Media. Springer, Berlin (2008)

    MATH  Google Scholar 

  50. Knobloch, P., Tobiska, L.: The \(P_{1}^{mod}\) element: A new nonconforming finite element for convection-diffusion problems. SIAM J. Numer. Anal. 41, 436–456 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. John, V., Maubach, J. M., Tobiska, L.: Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems. Numer. Math. 78, 165–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Rui Li for his valuable discussions during the stages of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangxin Chen.

Additional information

Communicated by: Ilaria Perugia

Research is supported in part by Foundation CMG in Xi’an Jiaotong University and the scholarship from China Scholarship Council (CSC) under the Grant CSC No.201706280335

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chen, Z. The nonconforming virtual element method for the Navier-Stokes equations. Adv Comput Math 45, 51–74 (2019). https://doi.org/10.1007/s10444-018-9602-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9602-z

Keywords

Mathematics Subject Classification (2010)

Navigation