Skip to main content
Log in

Superconvergence of the Crouzeix-Raviart element for elliptic equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a superconvergence result of the Crouzeix-Raviart element method is derived for the second-order elliptic equation on the uniform triangular meshes, in which any two adjacent triangles form a parallelogram. A local weighted averaging post-processing algorithm for the numerical stress is presented. Based on the equivalence between the Crouzeix-Raviart element method and the lowest order Raviart-Thomas element method, we prove that the error between the exact stress and the postprocessed numerical stress is of order h3/2. Two numerical examples are presented to confirm the theoretical result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Clarendon Press, New York (2001)

    MATH  Google Scholar 

  2. Bank, R.E., Xu, J.C.: Asymptotically exact a posteriori error estimators, part I: grids with superconvergence. SIAM J. Numer. Anal. 41, 2294–2312 (2003)

    Article  MathSciNet  Google Scholar 

  3. Brandts, J.H.: Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer. Math. 68, 311–324 (1994)

    Article  MathSciNet  Google Scholar 

  4. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics. Springer, New York (1991)

    Book  Google Scholar 

  5. Cao, W., Huang, Q.: Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J Sci. Comput. 72, 761–791 (2017)

    Article  MathSciNet  Google Scholar 

  6. Cao, W., Liu, H., Zhang, Z.: Superconvergence of the direct discontinuous Galerkin method for convection–diffusion equations. Numer. Methods Partial Differ. Eq. 33, 290–317 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chen, C.: Optimal points of the stresses for triangular linear element (in Chinese). Numer. Math. J. Chinese Univ. 2, 12–20 (1980)

    MathSciNet  MATH  Google Scholar 

  8. Chen, C.: Superconvergence of finite element solutions and their derivatives (in Chinese). Numer. Math. J. Chinese Univ. 3, 118–125 (1981)

    MathSciNet  Google Scholar 

  9. Chen, C.: Structure Theory of Superconvergence of Finite Elements (in Chinese). Hunan Science and Technology Press, Changsha (2002)

    Google Scholar 

  10. Chen, C., Huang, Y.: High Accuracy Theory of Finite Element Methods (in Chinese). Hunan Science Press, Hunan (1995)

    Google Scholar 

  11. Chen, H., Li, B.: Superconvergence analysis and error expansion for the Wilson nonconforming finite element. Numer. Math. 69, 125–140 (1994)

    Article  MathSciNet  Google Scholar 

  12. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland (1978)

  13. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2002)

    Article  MathSciNet  Google Scholar 

  14. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal Numer. 7, 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  15. Douglas, J., Roberts, J.E.: Global estimates for mixed methods for 2 nd order elliptic problems. Math. Comp. 44, 39–52 (1985)

    Article  MathSciNet  Google Scholar 

  16. Douglas, J., Wang, J.: Superconvergence of mixed finite element methods on rectangular domains. Calcolo 26, 121–134 (1989)

    Article  MathSciNet  Google Scholar 

  17. Duran, R.: Superconvergence for rectangular mixed finite elements. Numer. Math. 58, 2–15 (1990)

    Article  MathSciNet  Google Scholar 

  18. Ewing, R.E., Lazarov, R.D., Wang, J.: Superconvergence of the velocity along the Gauss lines in mixed finite element methods. SIAM J. Numer. Anal. 28, 1015–1029 (1991)

    Article  MathSciNet  Google Scholar 

  19. Hu, J., Ma, R.: Superconvergence of both the Crouzeix-Raviart and Morley elements. Numer. Math. 132, 491–509 (2016)

    Article  MathSciNet  Google Scholar 

  20. Huang, Y.: The superconvergence of finite element methods on domains with reentrant corners. In: Finite Element Methods: Superconvergence, Post-Processing, and a Posteriori Estimates, pp. 169–182. Marcel Dekker, Inc., New York (1998)

    Chapter  Google Scholar 

  21. Huang, Y., Xu, J.: Superconvergence of quadratic finite elements on mildly structured grids. Math. Comp. 77, 1253–1268 (2008)

    Article  MathSciNet  Google Scholar 

  22. Křižek, M.: Superconvergence results for linear triangular elements. Lect. Notes Math. Springer 1192, 315–320 (1986)

    Article  MathSciNet  Google Scholar 

  23. Lakhany, A.M., Marek, I., Whiteman, J.R.: Superconvergence results in mildly structured triangulations. Comput. Methods Appl. Mech. Engry. 189, 1–75 (2000)

    Article  Google Scholar 

  24. Li, Y: Superconvergence of the lowest order mixed finite element on mildly structured meshes. SIAM J. Numer. Anal. 56, 792–815 (2018)

    Article  MathSciNet  Google Scholar 

  25. Lin, Q., Tobiska, L., Zhou, A.: On the superconvergence of nonconforming low order finite elements applied to the Poisson equation. IMA J. Numer. Anal. 25, 160–181 (2005)

    Article  MathSciNet  Google Scholar 

  26. Lin, Q., Xu, J.: Linear finite elements with high accuracy. J. Comput. Math. 3, 115–133 (1985)

    MathSciNet  MATH  Google Scholar 

  27. Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Elements (in Chinese). Hebei University Press, Hebei (1996)

    Google Scholar 

  28. Mao, S., Shi, Z.: High accuracy analysis of two nonconforming plate elements. Numer. Math. 111, 407–443 (2009)

    Article  MathSciNet  Google Scholar 

  29. Marini, L.D.: An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22, 493–496 (1985)

    Article  MathSciNet  Google Scholar 

  30. Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems. Lect. Notes Math. 606, 477–503 (1977)

    MathSciNet  Google Scholar 

  31. Shi, Z., Jiang, B.: A new superconvergence property of Wilson nonconforming finite element. Numer. Math. 78, 259–268 (1997)

    Article  MathSciNet  Google Scholar 

  32. Wahlbin, L.B.: Superconvergence in Galkerkin Finite Element Methods. Springer Verlag, Berlin (1995)

    Book  Google Scholar 

  33. Ye, X.: Superconvergence of nonconforming fnite element method for the Stokes equations. Numer. Methods Partial Differ. Eq. 18, 143–154 (2002)

    Article  Google Scholar 

  34. Zlámal, M.: Superconvergence and reduced integration in the finite element method. Math. Comp. 32, 663–685 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Huang’s reserach was partially supported by NSFC Project (11826212) and Project of Scientific Research Fund of Hunan Provincial Science and Technology Department (2018WK4006). Yi’s reserach was partially supported by NSFC Project (11671341), Hunan Provincial NSF Project (2019JJ20016), and Department of Education of Hunan Province Project (16A206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianyu Yi.

Additional information

Communicated by: Paul Houston

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Huang, Y. & Yi, N. Superconvergence of the Crouzeix-Raviart element for elliptic equation. Adv Comput Math 45, 2833–2844 (2019). https://doi.org/10.1007/s10444-019-09714-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09714-9

Keywords

Mathematics Subject Classification (2010)

Navigation