Skip to main content
Log in

Long-time momentum and actions behaviour of energy-preserving methods for semi-linear wave equations via spatial spectral semi-discretisations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

It is known that wave equations have physically very important properties which should be respected by numerical schemes in order to predict correctly the solution over a long time period. In this paper, the long-time behaviour of momentum and actions for energy-preserving methods is analysed for semi-linear wave equations. A full discretisation of wave equations is derived and analysed by firstly using a spectral semi-discretisation in space and then by applying the adopted average vector field (AAVF) method in time. This numerical scheme can exactly preserve the energy of the semi-discrete system. The main theme of this paper is to analyse another important physical property of the scheme. It is shown that this scheme yields near conservation of a modified momentum and modified actions over long times. The results are rigorously proved based on the technique of modulated Fourier expansions in two stages. First, a multi-frequency modulated Fourier expansion of the AAVF method is constructed, and then two almost-invariants of the modulation system are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambusi, D.: Birkhoff normal form for some nonlinear PDEs. Comm. Math. Phys. 234, 253–285 (2003)

    Article  MathSciNet  Google Scholar 

  2. Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy conservation issues in the numerical solution of the semilinear wave equation. Appl. Math. Comput. 270, 842–870 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Cano, B.: Conservation of invariants by symmetric multistep cosine methods for second-order partial differential equations. BIT 53, 29–56 (2013)

    Article  MathSciNet  Google Scholar 

  4. Cano, B.: Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math. 103, 197–223 (2006)

    Article  MathSciNet  Google Scholar 

  5. Cano, B., Moreta, M.J.: Multistep cosine methods for second-order partial differential systems. IMA J. Numer. Anal. 30, 431–461 (2010)

    Article  MathSciNet  Google Scholar 

  6. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method. J. Comput. Phys. 231, 6770–6789 (2012)

    Article  MathSciNet  Google Scholar 

  7. Cohen, D., Gauckler, L.: One-stage exponential integrators for nonlinear schrödinger equations over long times. BIT 52, 877–903 (2012)

    Article  MathSciNet  Google Scholar 

  8. Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical discretizations of nonlinear wave equations. Numer. Math. 110, 113–143 (2008)

    Article  MathSciNet  Google Scholar 

  9. Cohen, D., Hairer, E., Lubich, C.: Long-time analysis of nonlinearly perturbed wave equations via modulated Fourier expansions. Arch. Ration. Mech. Anal. 187, 341–368 (2008)

    Article  MathSciNet  Google Scholar 

  10. Feng, K., Qin, M.: The symplectic methods for the computation of Hamiltonian equations, Numerical Methods for Partial Differential Equations, pp 1–37. Springer, Berlin (2006)

    Google Scholar 

  11. Gauckler, L.: Error analysis of trigonometric integrators for semilinear wave equations. SIAM J. Numer. Anal. 53, 1082–1106 (2015)

    Article  MathSciNet  Google Scholar 

  12. Gauckler, L.: Numerical long-time energy conservation for the nonlinear schrödinger equation. IMA J. Numer. Anal. 37, 2067–2090 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Gauckler, L., Hairer, E., Lubich, C.: Long-term analysis of semilinear wave equations with slowly varying wave speed. Comm. Part. Diff. Equa. 41, 1934–1959 (2016)

    Article  MathSciNet  Google Scholar 

  14. Gauckler, L., Hairer, E., Lubich, C., Weiss, D.: Metastable energy strata in weakly nonlinear wave equations. Comm. Part. Diff. Equa. 37, 1391–1413 (2012)

    Article  MathSciNet  Google Scholar 

  15. Gauckler, L., Lubich, C.: Nonlinear schrödinger equations and their spectral semi-discretizations over long times. Found. Comput. Math. 10, 141–169 (2010)

    Article  MathSciNet  Google Scholar 

  16. Gauckler, L., Lubich, C.: Splitting integrators for nonlinear schrödinger equations over long times. Found. Comput. Math. 10, 275–302 (2010)

    Article  MathSciNet  Google Scholar 

  17. Gauckler, L., Weiss, D.: Metastable energy strata in numerical discretizations of weakly nonlinear wave equations. Disc. Contin. Dyn. Syst. 37, 3721–3747 (2017)

    Article  MathSciNet  Google Scholar 

  18. Gauckler, L., Lu, J., Marzuola, J., Rousset, F., Schratz K.: Trigonometric integrators for quasilinear wave equations. Math. Comput. https://doi.org/10.1090/mcom/3339 (2018)

    Article  MathSciNet  Google Scholar 

  19. Grimm, V.: On the use of the Gautschi-type exponential integrator for wave equations. In: Numerical Mathematics and Advanced Applications. pp. 557–563, Springer, Berlin (2006)

  20. Hairer, E.: Energy-preserving variant of collocation methods. J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Hairer, E., Lubich, C.: Long-term analysis of a variational integrator for charged-particle dynamics in a strong magnetic field, Preprint, https://na.uni-tuebingen.de/preprints.shtml (2018)

  22. Hairer, E., Lubich, C.: Long-term analysis of the störmer-verlet method for Hamiltonian systems with a solution-dependent high frequency. Numer. Math. 134, 119–138 (2016)

    Article  MathSciNet  Google Scholar 

  23. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)

    Article  MathSciNet  Google Scholar 

  24. Hairer, E., Lubich, C.: Spectral semi-discretisations of weakly nonlinear wave equations over long times. Found. Comput. Math. 8, 319–334 (2008)

    Article  MathSciNet  Google Scholar 

  25. Hairer, E., Lubich, C., Wanner G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  26. Li, Y.W., Wu, X.: Exponential integrators preserving first integrals or Lyapunov functions for conservative or dissipative systems. SIAM J. Sci. Comput. 38, 1876–1895 (2016)

    Article  MathSciNet  Google Scholar 

  27. Li, Y.W., Wu, X.: General local energy-preserving integrators for solving multi-symplectic Hamiltonian PDEs. J. Comput. Phys. 301, 141–166 (2015)

    Article  MathSciNet  Google Scholar 

  28. Liu, C., Iserles, A., Wu, X.: Symmetric and arbitrarily high-order Birkhoff–Hermite time integrators and their long-time behaviour for solving nonlinear Klein–Gordon equations. J. Comput. Phys. 356, 1–30 (2018)

    Article  MathSciNet  Google Scholar 

  29. Liu, C., Wu, X.: An energy-preserving and symmetric scheme for nonlinear Hamiltonian wave equations. J. Math. Anal. Appl. 440, 167–182 (2016)

    Article  MathSciNet  Google Scholar 

  30. Liu, K., Wu, X., Shi, W: A linearly-fitted conservative (dissipative) scheme for efficiently solving conservative (dissipative) nonlinear wave PDEs. J. Comput. Math. 35, 780–800 (2017)

    Article  MathSciNet  Google Scholar 

  31. McLachlan, R.I., Stern, A.: Modified trigonometric integrators. SIAM J. Numer. Anal. 52, 1378–1397 (2014)

    Article  MathSciNet  Google Scholar 

  32. Mei, L., Liu, C., Wu, X.: An essential extension of the finite-energy condition for extended Runge–Kutta–Nyström integrators when applied to nonlinear wave equations. Commun. Comput. Phys. 22, 742–764 (2017)

    Article  MathSciNet  Google Scholar 

  33. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A 41(045206), 7 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Sanz-Serna, J.M.: Modulated Fourier expansions and heterogeneous multiscale methods. IMA J. Numer. Anal. 29, 595–605 (2009)

    Article  MathSciNet  Google Scholar 

  35. Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16, 151–181 (2016)

    Article  MathSciNet  Google Scholar 

  36. Wang, B., Wu, X.: A new high precision energy preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A 376, 1185–1190 (2012)

    Article  MathSciNet  Google Scholar 

  37. Wang, B., Wu, X.: Global error bounds of one-stage extended RKN integrators for semilinear wave equations. Numer. Algo. 81, 1203–1218. (2019)

    Article  MathSciNet  Google Scholar 

  38. Wang, B., Wu, X.: The formulation and analysis of energy-preserving schemes for solving high-dimensional nonlinear Klein-Gordon equations. IMA. J. Numer. Anal. https://doi.org/10.1093/imanum/dry047 (2018)

    Article  MathSciNet  Google Scholar 

  39. Wu, X., Wang, B.: Recent developments in Structure-Preserving algorithms for oscillatory differential equations. Springer Nature Singapore Pte Ltd (2018)

  40. Wu, X., Wang, B., Shi, W.: Efficient energy preserving integrators for oscillatory Hamiltonian systems. J. Comput Phys. 235, 587–605 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the two anonymous reviewers for their valuable suggestions, which helped improve this paper significantly. The authors are grateful to Professor Christian Lubich for his helpful comments and discussions on the topic of modulated Fourier expansions. We also thank him for drawing our attention to the long-term analysis of energy-preserving methods, which motives this paper.

Funding

The research of the first author is financially supported in part by the Alexander von Humboldt Foundation and by the Natural Science Foundation of Shandong Province (Outstanding Youth Foundation) under Grant ZR2017JL003. The research of the second author is financially supported in part by the National Natural Science Foundation of China under Grant 11671200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Additional information

Communicated by: Enrique Zuazua

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wu, X. Long-time momentum and actions behaviour of energy-preserving methods for semi-linear wave equations via spatial spectral semi-discretisations. Adv Comput Math 45, 2921–2952 (2019). https://doi.org/10.1007/s10444-019-09719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09719-4

Keywords

Mathematics Subject Classification (2010)