Skip to main content
Log in

Unconditionally optimal error estimates of a new mixed FEM for nonlinear Schrödinger equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a new mixed finite element scheme in space and a linearized backward Euler scheme in time are presented and investigated for the nonlinear Schrödinger equations. By introducing a suitable time-discrete system, both the errors in L2- and H1-norms for the original variable and L2-norm for the flux variable are derived without any time-step restriction, while previous works always required certain conditions between time step and space size. Finally, some numerical results are provided to verify the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Ablowitz, M.J., Segue, H.: Solitons and the Inverse Scattering Transformation. SIAM, Philadelphia (1981)

    Google Scholar 

  3. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear schrödinger equations. SIAM J. Sci. Comput. 33, 1008–1033 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear schrödinger equation. Nmer. Math. 59, 31–53 (1911)

    MATH  Google Scholar 

  5. Akrivis, G.D.: Finite difference discretization of the cubic schrödinger equation. IMA J. Numer. Analysis. 13(1), 115–124 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Bratsos, A.G.: A Modified numerical scheme for the cubic schrödinger equation. Numer. Methods Partial Differential Equations 27, 608–620 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Borzi, A., Decker, E.: Analysis of a leap-frog pseudospectral scheme for the schrödinger equation. J. Comput. Appl. Math. 193, 65–88 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P.G.: The finite element method for elliptic problem. North Holland, Amsterdam (1978)

  9. Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear schrödinger equation. J. Comput. Phys. 148(2), 397–415 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Cai, W.T., Li, J., Chen, Z.X.: Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear schrödinger equation. Adv. Comput. Math. 42(6), 1311–1330 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Chen, S.C., Chen, H.R.: New mixed element schemes for second order elliptic problem. Math. Numer. Sin. 32, 213–218 (2010). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  12. Chen, Z.X.: Finite Element Methods and Their Applications. Springer, Berlin (2005)

    MATH  Google Scholar 

  13. Dehghan, M., Taleei, A.: Numerical solution of nonlinear schrödinger equation by using time-space pseudo-spectral method. Numer. Methods Partial Differential Equations 26, 979–990 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Ebaid, A., Khaled, S.M.: New types of exact solutions for nonlinear schrödinger equation with cubic nonlinearity. J. Comput. Appl. Math. 235, 1984–1992 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Gao, Y.L., Mei, L.Q.: Implicit-explicit multistep methods for general two-dimensional nonlinear schrödinger equations. Appl. Nmer. Math. 109, 41–60 (2016)

    MATH  Google Scholar 

  16. Gao, H.D.: Optimal error analysis of Galerkin FEMs for nonlinear Joule heating equations. J. Sci. Comput. 58, 627–647 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Jin, J., Wu, X.: Analysis of finite element method for one-dimensional time-dependent schrödinger equation on unbounded domain. J. Comput. Appl. Math. 220, 240–256 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Hasegawa, A., Kodama, Y.: Solitons in optical communications. Rev. Mod. Phys. 68(2), 423–444 (1996)

    MATH  Google Scholar 

  19. Li, L.X., Wang, M.: The (G’/G)-expansion method and travelling wave solutions for a high-order nonlinear schrödinger equation. Appl. Math. Comput. 208(2), 440–445 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Lin, Q., Liu, X.Q.: Global superconvergence estimates of finite element method for schrödinger equation. J. Comput. Math. 16(6), 521–526 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Liao, H., Sun, Z., Shi, H.: Error estimate of fourth-order compact scheme for linear schrödinger equations. SIAM J. Numer. Anal. 47, 4381–4401 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Li, B.K., Fairweather, G., Bialecki, B.: Discrete-time orthogonal spline collocation methods for schrödinger equations in two space variables. SIAM J. Numer. Anal. 35, 453–477 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Newell, A.C.: Solitons in Mathematical and Physics. SIAM, Philadelphia (1985)

    MATH  Google Scholar 

  26. Reichel, B., Leble, S.: On convergence and stability of a numerical scheme of coupled nonlinear schrödinger equations. Comput. Math. Appl. 55, 745–759 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Sun, Z., Zhao, D.: On the \(l_{\infty }\) convergence of a difference scheme for coupled nonlinear schrödinger equations. Comput. Math. Appl. 59, 3286–3300 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Sun, W.W., Wang, J.L.: Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear schrödinger system in 3D. J. Comput. Appl. Math. 317, 685–699 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Sanz-Serna, J.M.: Methods for the numerical solution of nonlinear schrödinger equation. Math. Comput. 43, 21–27 (1984)

    MATH  Google Scholar 

  30. Shi, D.Y., Wang, J.J.: Unconditional superconvergence analysis of a crank-nicolson galerkin FEM for nonlinear schrödinger equation. J. Sci. Comput. 72(3), 1093–1118 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Shi, D.Y., Wang, P.L., Zhao, Y.M.: Superconvergence analysis of anisotropic linear triangular finite element for nonlinear schrödinger equation. Appl. Math. Lett. 38, 129–134 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Shi, D.Y., Liao, X., Wang, L.L.: A nonconforming quadrilateral finite element approximation to nonlinear schrödinger equation. Acta. Math. Sci. 37(3), 584–592 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Shi, D.Y., Liao, X., Wang, L.L.: Superconvergence analysis of conforming finite element method for nonlinear schrödinger equation. Appl. Math. Comput. 289(20), 298–310 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Shi, F., Yu, J.P., Li, K.T.: A new stabilized mixed finite-element method for Poisson equation based on two local Gauss integrations for linear element pair. Int. J. Comput. Math. 88, 2293–2305 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Tourigny, Y.: Optimal h 1 estimates for two time-discrete Galerkin approximations of a nonlinear schrödinger equation. IMA J. Numer. Anal. 11, 509–523 (1991)

    MathSciNet  MATH  Google Scholar 

  36. Thomee, V.: Galerkin Finite Element Methods for Paraboloc Problems. Springer, Berlin (1977)

    Google Scholar 

  37. Wang, J.L.: A new error analysis of crank-nicolson galerkin FEMs for a generalized nonlinear schrödinger equation. J. Sci. Comput. 60(2), 390–407 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Weng, Z.F., Feng, X.L., Huang, P.Z.: A new mixed finite element method based on the Crank-Nicolson scheme for the parabolic problems. Appl. Math. Model. 36, 5068–5079 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Wu, L.: Two-grid mixed finite-element methods for nonlinear schrödinger equations. Numer. Methods for Partial Differential Equations 28, 63–73 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for nonlinear schrödinger equations. J. Comput. Phys. 205, 72–77 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, H.: Extended Jacobi elliptic function expansion method and its applications. Commun. Nonlinear Sci. Numer. Simul. 12(5), 627–635 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Zouraris, G.E.: On the convergence of a linear two-step finite element method for the nonlinear schrödinger equation. M2AN Math. Model. Numer. Anal. 35, 389–405 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Zlamal, M.: Curved elements in the finite element method. I. SIAM J. Numer. Anal. 10, 229–240 (1973)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 11671369; 11271340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyang Shi.

Additional information

Communicated by: Long Chen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Yang, H. Unconditionally optimal error estimates of a new mixed FEM for nonlinear Schrödinger equations. Adv Comput Math 45, 3173–3194 (2019). https://doi.org/10.1007/s10444-019-09732-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-019-09732-7

Keywords

Mathematics Subject Classification (2010)

Navigation