Abstract
In this paper, we propose a discontinuous finite volume element method to solve a phase field model for two immiscible incompressible fluids. In this finite volume element scheme, discontinuous linear finite element basis functions are used to approximate the velocity, phase function, and chemical potential while piecewise constants are used to approximate the pressure. This numerical method is efficient, optimally convergent, conserving the mass, convenient to implement, flexible for mesh refinement, and easy to handle complex geometries with different types of boundary conditions. We rigorously prove the mass conservation property and the discrete energy dissipation for the proposed fully discrete discontinuous finite volume element scheme. Using numerical tests, we verify the accuracy, confirm the mass conservation and the energy law, test the influence of surface tension and small density variations, and simulate the driven cavity, the Rayleigh-Taylor instability.
Similar content being viewed by others
References
Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer Anal. 39 (5), 1749–1779 (2002)
Bai, F., He, X., Zhou, R., Yang, X., Wang, C.: Three dimensional phase-field investigation of droplet formation in microfluidic flow focusing devices with experimental validation. Int. J Multiphase Flow 93, 130–141 (2017)
Becker, R., Feng, X., Prohl, A.: Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J. Numer Anal. 46(4), 1704–1731 (2008)
Bi, C., Geng, J.: Discontinuous finite volume element method for parabolic problems. Numer Methods Partial Differ Equations 26(2), 367–383 (2010)
Bi, C., Geng, J.: A discontinuous finite volume element method for second-order elliptic problems. Numer Methods Partial Differ Equations 28(2), 425–440 (2012)
Boyer, F., Nabet, F.: A DDFV method for a Cahn-Hilliard/Stokes phase field model with dynamic boundary conditions. ESAIM Math. Model. Num. Anal. 51, 1691–1731 (2017)
Bürgera, R., Kumarb, S., Ruiz-Baier, R.: Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation. J. Comput. Phys. 299, 446–471 (2015)
Carstensen, C., Nataraj, N., Pani, A.K.: Comparison results and unified analysis for first-order finite volume element methods for a Poisson model problem. IMA. J. Numer. Anal. 36(3), 1120–1142 (2016)
Chen, G., Hu, W., Shen, J., Singler, J., Zhang, Y., Zheng, X.: An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343, 643–661 (2018)
Chen, J., Sun, S., Wang, X.: A numerical method for a model of two-phase flow in a coupled free flow and porous media system. J. Comput. Phys. 268, 1–16 (2014)
Chen, L.: I FEM: An integrated finite element methods package in MATLAB. Technical report, University of California at Irvine, (2009)
Chen, L., Zhao, J., Yang, X.: Regularized linear schemes for the molecular beam epitaxy model with slope selection. Appl. Numer. Math. 128, 139–156 (2018)
Chen, M.H., Bollada, P.C., Jimack, P.K.: Dynamic load balancing for the parallel, adaptive, multigrid solution of implicit phase-field simulations. Int. J. Numer. Anal. Mod. 16(2), 297–318 (2019)
Chen, Y., Luo, Y., Feng, M.: Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem. Appl. Math. Comput. 219(17), 9043–9056 (2013)
Chen, Y., Shen, J.: Efficient, Adaptive energy stable schemes for the incompressible Cahn-Hilliard Navier-Stokes phase-field models. J. Comput. Phys. 308, 40–56 (2016)
Cheng, Y., Zhang, Q., Wang, H.: Local analysis of the local discontinuous Galerkin method with the generalized alternating numerical flux for two-dimensional singularly perturbed problem. Int. J. Numer. Anal Mod. 15, 785–810 (2018)
Chessa, J., Belytschko, T.: An extended finite element method for two-phase fluids. J. Appl. Mech. (ASME) 70, 10–17 (2003)
Chou, S.H., Ye, X.: Unified analysis of finite volume methods for second order elliptic problems. SIAM J. Numer. Anal. 45(4), 1639–1653 (2007)
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)
Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system . SIAM J. Numer Anal. 40 (1), 319–343 (2002)
Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)
Cui, M., Ye, X.: Unified analysis of finite volume methods for the Stokes equations. SIAM J. Numer. Anal. 48(3), 824–839 (2010)
Dong, Z.: Discontinuous Galerkin methods for the Biharmonic problem on polygonal and polyhedral meshes. Int. J. Numer. Anal. Mod. 16, 825–846 (2019)
Douglas, J., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. Lect. Notes Physics 58, 207–216 (1976)
Fakhari, A., Rahimian, M.H.: Phase-field modeling by the method of lattice Boltzmann equations. Phys. Rev. E. 81, 036707 (2010)
Feng, X., He, Y., Liu, C.: Analysis of finite element approximations of a phase field model for two-phase fluids. Math. Comput. 76(258), 539–571 (2007)
Feng, X., Karakashian, O.A.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comp. 76, 1093–1117 (2007)
Feng, X., Li, Y., Xing, Y.: Analysis of mixed interior penalty discontinuous galerkin methods for the Cahn-Hilliard equation and the Hele-Shaw flow. SIAM J. Numer. Anal 54(2), 825–847 (2016)
Feng, X.B.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006)
Frank, F., Liu, C., Aipak, F.O., Rivière, B.: A finite volume/discontinuous Galerkin method for the advective Cahn-Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging. Computat. Geosci. 22(2), 543–563 (2018)
Fries, T.P.: The intrinsic XFEM for two-fluid flows. Int. J. Numer. Meth. Fluids 60, 437–471 (2009)
Gao, M., Wang, X.P.: A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231, 1372–1386 (2012)
Gao, M., Wang, X.P.: An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity. J. Comput. Phys. 272, 704–718 (2014)
Gao, Y., He, X., Mei, L., Yang, X.: Decoupled, linear, and energy stable finite element method for the Cahn-Hilliard-Navier-Stokes-Darcy phase field model. SIAM J. Sci. Comput. 40(1), B110–B137 (2018)
Girault, V., Raviart, P.A.: Finite element methods for navier-stokes equations. Theory and algorithms, Volume 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986)
Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comp. 74(249), 53–84 (2005)
Gunzburger, M.: Finite element methods for viscous incompressible flows. A guide to theory, practice, and algorithms. Computer Science and Scientific Computing. Academic Press, Boston (1989)
Han, D., Sun, D., Wang, X.: Two-phase flows in karstic geometry. Math. Method Appl. Sci. 37(18), 3048–3063 (2013)
Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation. J. Comput. Phys. 290, 139–156 (2015)
Han, D., Wang, X., Wu, H.: Existence and uniqueness of global weak solutions to a Cahn-Hilliard-Stokes-Darcy system for two phase incompressible flows in karstic geometry. J Differ. Equ. 257(10), 3887–3933 (2014)
He, Q., Glowinski, R., Wang, X.P.: A least-squares/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line. J. Comput. Phys. 230(12), 4991–5009 (2011)
He, Y., Li, L., Lanteri, S., Huang, T.Z.: Optimized Schwarz algorithms for solving time-harmonic Maxwell’s equations discretized by a hybridizable discontinuous Galerkin method. Comput. Phys. Commun. 200, 176–181 (2016)
Hintermüller, M., Hinze, M., Kahle, C.: An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system. J. Comput. Phys. 235, 810–827 (2013)
Hua, J., Linand, P., Liu, C., Wang, Q.: Energy law preserving c0 finite element schemes for phase field models in two-phase flow computations. J. Comput. Phys. 230, 7115–7131 (2011)
Huang, Q., Yang, X., He, X.: Numerical approximations for a smectic-A liquid crystal flow model: First-order, linear, decoupled and energy stable schemes. Discrete Contin. Dyn. Syst. Ser. B 23(6), 2177–2192 (2018)
Jacqmin, D.: An energy approach to the continuum surface tension method. In: 34th Aerospace sciences meeting and exhibit (1996)
Jeon, Y., Park, E.: A hybrid discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 48(5), 1968–1983 (2010)
Jia, Z., Zhang, S.: A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions. J. Comput. Phys. 230(7), 2496–2522 (2011)
Kahle, C.: An \(l^{\infty }\) bound for the Cahn-hilliard equation with relaxed non-smooth free energy. Int. J. Numer. Anal. Model. 14, 243–254 (2017)
Kanschat, G.: Block preconditioners for LDG discretizations of linear incompressible flow problems. J. Sci. Comput. 22(/23), 371–384 (2005)
Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn-Hilliard-Navier-Stokes system. Interfaces Free Bound 10, 15–43 (2008)
R.E. Khayat: Three-dimensional boundary-element analysis of drop deformation for newtonian and viscoelastic systems. Int. J. Num. Meth. Fluids 34, 241–275 (2000)
Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12(3), 613–661 (2012)
Kumar, S.: A mixed and discontinuous Galerkin finite volume element method for incompressible miscible displacement problems in porous media. Numer. Methods Partial Differ. Equ. 28(4), 1354–1381 (2012)
Kumar, S., Nataraj, N., Pani, A.K.: Discontinuous Galerkin finite volume element methods for second-order linear elliptic problems. Numer. Methods Partial Differ. Equ. 25, 1402–1424 (2009)
Kumarb, S., Ruiz-Baier, R.: Equal order discontinuous finite volume element methods for the Stokes problem. J. Sci Comput. 65(3), 956–978 (2015)
Li, K., Huang, T., Li, L., Lanteri, S.: A reduced-order DG formulation based on POD method for the time-domain Maxwell’s equations in dispersive media. J. Comput. Appl Math. 336, 249–266 (2018)
Li, K., Huang, T., Li, L., Lanteri, S., Xu, L., Li, B.: A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation. IEEE Trans. Antenn. Propag. 66(1), 242–254 (2018)
Li, K., Huang, T.-Z., Li, L., Lanteri, S.: A reduced-order discontinuous Galerkin method based on a Krylov subspace technique in nanophotonics. Appl. Math. Comput. 358, 128–145 (2019)
Li, M., Guyenne, P., Li, F., Xu, L.: A positivity-preserving well-balanced central discontinuous Galerkin method for the nonlinear shallow water equations. J. Sci. Comput. 71, 994–1034 (2017)
Li, R., Gao, Y., Li, J., Chen, Z.: Discontinuous finite volume element method for a coupled non-stationary Stokes-Darcy problem. J. Sci Comput. 74(2), 693–727 (2018)
Lin, F., He, X.-M., Wen, X.: Fast, unconditionally energy stable large time stepping method for a new Allen-Cahn type square phase-field crystal model. Appl. Math. Lett. 92, 248–255 (2019)
Lin, P., Liu, C., Zhang, H.: An energy law preserving c0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys. 227(2), 1411–1427 (2007)
Liu, C., Frank, F., Rivière, B.: Numerical error analysis for nonsymmetric interior penalty discontinuous Galerkin method of Cahn-Hilliard equation. Numer. Methods Partial Differ. Equ. 35(4), 1509–1537 (2019)
Liu, C., Rivière, B. Numerical analysis of a discontinuous Galerkin method for Cahn-Hilliard-Navier-Stokes equations arXiv:1807.02725v2 [math.NA] (2018)
Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179(3-4), 211–228 (2003)
Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)
Liu, J., Mu, L., Ye, X.: An adaptive discontinuous finite volume method for elliptic problems. J. Comput. Appl. Math. 235(18), 5422–5431 (2011)
Liu, J., Mu, L., Ye, X., Jari, R.: Convergence of the discontinuous finite volume method for elliptic problems with minimal regularity. J. Comput. Appl. Math. 236(17), 4537–4546 (2012)
Liu, Z.H., Qiao, Z.H.: Wong-Zakai approximations of stochastic Allen-Cahn equation. Int. J. Numer. Anal. Mod. 16, 681–694 (2019)
Loverich, J., Hakim, A., Shumlak, U.: A discontinuous Galerkin method for ideal two-fluid plasma equations. Commun. Comput. Phys. 9(2), 240–268 (2011)
Luo, Y., Feng, M., Xu, Y.: A stabilized mixed discontinuous Galerkin method for the incompressible miscible displacement problem. Bound Value Probl. page 2011: 48 (2011)
Minoli, C.A.A., Kopriva, D.A.: Discontinuous Galerkin spectral element approximations on moving meshes. J. Comput. Phys. 230(5), 1876–1902 (2011)
Mu, L., Jari, R.: A posteriori error analysis for discontinuous finite volume methods of elliptic interface problems. J. Comput. Appl. Math. 255, 529–543 (2014)
Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011)
Nishida, H., Kohashi, S., Tanaka, M.: Construction of seamless immersed boundary phase-field method. Comput. Fluids 164, 41–49 (2018)
Oden, J.T., Babuska, I., Baumann, C.E.: A discontinuous Hp finite element method for diffusion problems. J. Comput. Phys. 146, 491–519 (1998)
Park, K., Dorao, C.A., Fernandino, M.: Numerical solution of coupled Cahn-Hilliard and Navier-Stokes system using the least-squares spectral element method. In: Proceeding of the ICNMM conference, Washington (2016)
Park, K., Fernandino, M., Dorao, C.A., Gerritsma, M.: The least-squares spectral element method for phase-field models for isothermal fluid mixture. Comput. Math. Appl. 74(8), 1981–1998 (2017)
Peraire, J., Persson, P.-O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30(4), 1806–1824 (2008)
Rayleigh, L.: On the theory of surface forces II. compressible fluids. Philos. Mag. 33(201), 209–220 (1892)
Rebholz, L.G., Wise, S.M., Xiao, M.Y.: Penalty-projection schemes for the Cahn-Hilliard Navier-Stokes diffuse interface model of two phase flow, and their connection to divergence-free coupled schemes. Int. J. Numer. Anal. Mod. 15(4-5), 649–676 (2018)
Repossi, E., Rosso, R., Verani, M.: A phase-field model for liquid-gas mixtures: mathematical modelling and discontinuous Galerkin discretization. Calcolo 54, 1339–1377 (2017)
Rivièrem, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation. Society for industrial and applied mathematics philadelphia (2008)
Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems Part 1. Comput. Geosci. 3, 337–360 (1999)
Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)
Shi, Y., Bao, K., Wang, X.P.: 3D adaptive finite element method for a phase field model for moving contact line problems. Inverse Problem and Imaging 7, 947–959 (2013)
Temam, R. Navier-Stokes equations. Publishing, numerical analysis. AMS Chelsea Providence, RI Reprint of the 1984 edition edition (2001)
van der Waals, J.: The thermodynamic theory of capillarity under the hypothesis of a continuous density variation. J. Stat. Phys. 20, 197–244 (1893)
Villela, M., Villar, M., Serfaty, R., Mariano, F., Silveira-Neto, A.: Mathematical modeling and numerical simulation of two-phase flows using Fourier pseudospectral and front-tracking methods: The proposition of a new method. Appl. Math. Model. 52, 241–254 (2017)
Wang, F., Han, W.: Reliable and efficient a posteriori error estimates of DG methods for a simplified frictional contact problem. Int. J. Numer. Anal. Mod. 16, 49–62 (2019)
Wang, G., He, Y., Li, R.: Discontinuous finite volume methods for the stationary Stokes-Darcy problem. Int. J. Numer. Meth Engrg. 107(5), 395–418 (2016)
Wang, J., Wang, Y., Ye, X.: A unified a posteriori error estimator for finite volume methods for the Stokes equations. Math. Methods Appl. Sci. 41(3), 866–880 (2018)
Wang, W., Guzmán, J., Shu, C.-W.: The multiscale discontinuous Galerkin method for solving a class of second order elliptic problems with rough coefficients. Int. J. Numer. Anal. Model. 8(1), 28–47 (2011)
Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal 15, 152–161 (1978)
Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the generalized Zakharov system. J. Comput. Phys. 229(4), 1238–1259 (2010)
Xu, C., Chen, C., Yang, X., He, X.-M.: Numerical approximations for the hydrodynamics coupled binary surfactant phase field model: second order, linear, unconditionally energy stable schemes. Commun. Math. Sci. 17, 835–858 (2019)
Yang, J., Du, Q., Zhang, W.: Uniform lp−Bound of the Allen-Cahn equation and its numerical discretization. Int. J. Numer. Anal. Mod. 15, 213–227 (2018)
Yang, J., Mao, S., He, X.-M., Yang, X., He, Y.: A diffuse interface model and semi-implicit energy stable finite element method for two-phase magnetohydrodynamic flows. Comput. Meth. Appl. Mech. Eng. 356, 435–464 (2019)
Yang, W., Cao, L., Huang, Y.Q., Cui, J.: A new a posteriori error estimate for the interior penalty discontinuous Galerkin method. Int. J. Numer. Anal Mod. 16, 210–224 (2019)
Yang, X., Zhao, J., He, X.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343(1), 80–97 (2018)
Ye, X.: A new discontinuous finite volume method for elliptic problems. SIAM J. Numer. Anal. 42(3), 1062–1072 (2004)
Ye, X.: A discontinuous finite volume method for the Stokes problems. SIAM J. Numer. Anal. 44(1), 183–198 (2006)
Zhang, J., Chen, C., Yang, X., Chu, Y., Xia, Z.: Efficient, non-iterative, and second-order accurate numerical algorithms for the anisotropic Allen-Cahn Equation with precise nonlocal mass conservation. J. Comput. Appl. Math. 363, 444–463 (2020)
Zhang, Z.R., Tang, H.Z.: An adaptive phase field method for the mixture of two incompressible fluids. Comput. Fluids 36(8), 1307–1318 (2007)
Zheng, H., Shu, C., Chew., Y.T.: A lattice Boltzmann model for multiphase flows with large density ratio. J. Comput. Phys. 218, 353–371 (2006)
Zhu, L., Huang, T., Li, L.: A hybrid-mesh hybridizable discontinuous Galerkin method for solving the time-harmonic Maxwell’s equations. Appl. Math. Lett. 68, 109–116 (2017)
Funding
Rui Li is financially supported by the National Natural Science Foundation of China (11901372), the Natural Science Foundation of Shaanxi Province (2019JQ-077), and the Fundamental Research Fund for the Central Universities of China (GK201903007, GK201901008); Yali Gao is financially supported by the National Natural Science Foundation of China (11901461) and the Natural Science Foundation of Shaanxi Province (2019JQ-024); Xiaoming He is financially supported by NSF grant DMS-1818642; Jie Chen is financially supported by the XJTLU Key Programme Special Fund (KSF-P-2, KSF-E-50); Zhangxin Chen is financially supported by Foundation CMG.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Ilaria Perugia
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, R., Gao, Y., Chen, J. et al. Discontinuous finite volume element method for a coupled Navier-Stokes-Cahn-Hilliard phase field model. Adv Comput Math 46, 25 (2020). https://doi.org/10.1007/s10444-020-09764-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-020-09764-4
Keywords
- Phase field model
- Navier-Stokes-Cahn-Hilliard equation
- Discontinuous finite volume element methods
- Discrete energy dissipation