Skip to main content
Log in

Discontinuous finite volume element method for a coupled Navier-Stokes-Cahn-Hilliard phase field model

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose a discontinuous finite volume element method to solve a phase field model for two immiscible incompressible fluids. In this finite volume element scheme, discontinuous linear finite element basis functions are used to approximate the velocity, phase function, and chemical potential while piecewise constants are used to approximate the pressure. This numerical method is efficient, optimally convergent, conserving the mass, convenient to implement, flexible for mesh refinement, and easy to handle complex geometries with different types of boundary conditions. We rigorously prove the mass conservation property and the discrete energy dissipation for the proposed fully discrete discontinuous finite volume element scheme. Using numerical tests, we verify the accuracy, confirm the mass conservation and the energy law, test the influence of surface tension and small density variations, and simulate the driven cavity, the Rayleigh-Taylor instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer Anal. 39 (5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, F., He, X., Zhou, R., Yang, X., Wang, C.: Three dimensional phase-field investigation of droplet formation in microfluidic flow focusing devices with experimental validation. Int. J Multiphase Flow 93, 130–141 (2017)

    Article  MathSciNet  Google Scholar 

  4. Becker, R., Feng, X., Prohl, A.: Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J. Numer Anal. 46(4), 1704–1731 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bi, C., Geng, J.: Discontinuous finite volume element method for parabolic problems. Numer Methods Partial Differ Equations 26(2), 367–383 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bi, C., Geng, J.: A discontinuous finite volume element method for second-order elliptic problems. Numer Methods Partial Differ Equations 28(2), 425–440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyer, F., Nabet, F.: A DDFV method for a Cahn-Hilliard/Stokes phase field model with dynamic boundary conditions. ESAIM Math. Model. Num. Anal. 51, 1691–1731 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bürgera, R., Kumarb, S., Ruiz-Baier, R.: Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation. J. Comput. Phys. 299, 446–471 (2015)

    Article  MathSciNet  Google Scholar 

  9. Carstensen, C., Nataraj, N., Pani, A.K.: Comparison results and unified analysis for first-order finite volume element methods for a Poisson model problem. IMA. J. Numer. Anal. 36(3), 1120–1142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, G., Hu, W., Shen, J., Singler, J., Zhang, Y., Zheng, X.: An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343, 643–661 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, J., Sun, S., Wang, X.: A numerical method for a model of two-phase flow in a coupled free flow and porous media system. J. Comput. Phys. 268, 1–16 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, L.: I FEM: An integrated finite element methods package in MATLAB. Technical report, University of California at Irvine, (2009)

  13. Chen, L., Zhao, J., Yang, X.: Regularized linear schemes for the molecular beam epitaxy model with slope selection. Appl. Numer. Math. 128, 139–156 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, M.H., Bollada, P.C., Jimack, P.K.: Dynamic load balancing for the parallel, adaptive, multigrid solution of implicit phase-field simulations. Int. J. Numer. Anal. Mod. 16(2), 297–318 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Chen, Y., Luo, Y., Feng, M.: Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem. Appl. Math. Comput. 219(17), 9043–9056 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Chen, Y., Shen, J.: Efficient, Adaptive energy stable schemes for the incompressible Cahn-Hilliard Navier-Stokes phase-field models. J. Comput. Phys. 308, 40–56 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheng, Y., Zhang, Q., Wang, H.: Local analysis of the local discontinuous Galerkin method with the generalized alternating numerical flux for two-dimensional singularly perturbed problem. Int. J. Numer. Anal Mod. 15, 785–810 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Chessa, J., Belytschko, T.: An extended finite element method for two-phase fluids. J. Appl. Mech. (ASME) 70, 10–17 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chou, S.H., Ye, X.: Unified analysis of finite volume methods for second order elliptic problems. SIAM J. Numer. Anal. 45(4), 1639–1653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system . SIAM J. Numer Anal. 40 (1), 319–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cui, M., Ye, X.: Unified analysis of finite volume methods for the Stokes equations. SIAM J. Numer. Anal. 48(3), 824–839 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dong, Z.: Discontinuous Galerkin methods for the Biharmonic problem on polygonal and polyhedral meshes. Int. J. Numer. Anal. Mod. 16, 825–846 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Douglas, J., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. Lect. Notes Physics 58, 207–216 (1976)

    Article  MathSciNet  Google Scholar 

  26. Fakhari, A., Rahimian, M.H.: Phase-field modeling by the method of lattice Boltzmann equations. Phys. Rev. E. 81, 036707 (2010)

    Article  MATH  Google Scholar 

  27. Feng, X., He, Y., Liu, C.: Analysis of finite element approximations of a phase field model for two-phase fluids. Math. Comput. 76(258), 539–571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feng, X., Karakashian, O.A.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comp. 76, 1093–1117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Feng, X., Li, Y., Xing, Y.: Analysis of mixed interior penalty discontinuous galerkin methods for the Cahn-Hilliard equation and the Hele-Shaw flow. SIAM J. Numer. Anal 54(2), 825–847 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Feng, X.B.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Frank, F., Liu, C., Aipak, F.O., Rivière, B.: A finite volume/discontinuous Galerkin method for the advective Cahn-Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging. Computat. Geosci. 22(2), 543–563 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fries, T.P.: The intrinsic XFEM for two-fluid flows. Int. J. Numer. Meth. Fluids 60, 437–471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gao, M., Wang, X.P.: A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231, 1372–1386 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gao, M., Wang, X.P.: An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity. J. Comput. Phys. 272, 704–718 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gao, Y., He, X., Mei, L., Yang, X.: Decoupled, linear, and energy stable finite element method for the Cahn-Hilliard-Navier-Stokes-Darcy phase field model. SIAM J. Sci. Comput. 40(1), B110–B137 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Girault, V., Raviart, P.A.: Finite element methods for navier-stokes equations. Theory and algorithms, Volume 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  37. Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comp. 74(249), 53–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gunzburger, M.: Finite element methods for viscous incompressible flows. A guide to theory, practice, and algorithms. Computer Science and Scientific Computing. Academic Press, Boston (1989)

  39. Han, D., Sun, D., Wang, X.: Two-phase flows in karstic geometry. Math. Method Appl. Sci. 37(18), 3048–3063 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation. J. Comput. Phys. 290, 139–156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Han, D., Wang, X., Wu, H.: Existence and uniqueness of global weak solutions to a Cahn-Hilliard-Stokes-Darcy system for two phase incompressible flows in karstic geometry. J Differ. Equ. 257(10), 3887–3933 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. He, Q., Glowinski, R., Wang, X.P.: A least-squares/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line. J. Comput. Phys. 230(12), 4991–5009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. He, Y., Li, L., Lanteri, S., Huang, T.Z.: Optimized Schwarz algorithms for solving time-harmonic Maxwell’s equations discretized by a hybridizable discontinuous Galerkin method. Comput. Phys. Commun. 200, 176–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hintermüller, M., Hinze, M., Kahle, C.: An adaptive finite element Moreau-Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system. J. Comput. Phys. 235, 810–827 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hua, J., Linand, P., Liu, C., Wang, Q.: Energy law preserving c0 finite element schemes for phase field models in two-phase flow computations. J. Comput. Phys. 230, 7115–7131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Huang, Q., Yang, X., He, X.: Numerical approximations for a smectic-A liquid crystal flow model: First-order, linear, decoupled and energy stable schemes. Discrete Contin. Dyn. Syst. Ser. B 23(6), 2177–2192 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Jacqmin, D.: An energy approach to the continuum surface tension method. In: 34th Aerospace sciences meeting and exhibit (1996)

  48. Jeon, Y., Park, E.: A hybrid discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 48(5), 1968–1983 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Jia, Z., Zhang, S.: A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions. J. Comput. Phys. 230(7), 2496–2522 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kahle, C.: An \(l^{\infty }\) bound for the Cahn-hilliard equation with relaxed non-smooth free energy. Int. J. Numer. Anal. Model. 14, 243–254 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Kanschat, G.: Block preconditioners for LDG discretizations of linear incompressible flow problems. J. Sci. Comput. 22(/23), 371–384 (2005)

    MathSciNet  MATH  Google Scholar 

  52. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn-Hilliard-Navier-Stokes system. Interfaces Free Bound 10, 15–43 (2008)

    Article  MathSciNet  Google Scholar 

  53. R.E. Khayat: Three-dimensional boundary-element analysis of drop deformation for newtonian and viscoelastic systems. Int. J. Num. Meth. Fluids 34, 241–275 (2000)

    Article  MATH  Google Scholar 

  54. Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12(3), 613–661 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kumar, S.: A mixed and discontinuous Galerkin finite volume element method for incompressible miscible displacement problems in porous media. Numer. Methods Partial Differ. Equ. 28(4), 1354–1381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kumar, S., Nataraj, N., Pani, A.K.: Discontinuous Galerkin finite volume element methods for second-order linear elliptic problems. Numer. Methods Partial Differ. Equ. 25, 1402–1424 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Kumarb, S., Ruiz-Baier, R.: Equal order discontinuous finite volume element methods for the Stokes problem. J. Sci Comput. 65(3), 956–978 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Li, K., Huang, T., Li, L., Lanteri, S.: A reduced-order DG formulation based on POD method for the time-domain Maxwell’s equations in dispersive media. J. Comput. Appl Math. 336, 249–266 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  59. Li, K., Huang, T., Li, L., Lanteri, S., Xu, L., Li, B.: A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation. IEEE Trans. Antenn. Propag. 66(1), 242–254 (2018)

    Article  Google Scholar 

  60. Li, K., Huang, T.-Z., Li, L., Lanteri, S.: A reduced-order discontinuous Galerkin method based on a Krylov subspace technique in nanophotonics. Appl. Math. Comput. 358, 128–145 (2019)

    MathSciNet  MATH  Google Scholar 

  61. Li, M., Guyenne, P., Li, F., Xu, L.: A positivity-preserving well-balanced central discontinuous Galerkin method for the nonlinear shallow water equations. J. Sci. Comput. 71, 994–1034 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  62. Li, R., Gao, Y., Li, J., Chen, Z.: Discontinuous finite volume element method for a coupled non-stationary Stokes-Darcy problem. J. Sci Comput. 74(2), 693–727 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. Lin, F., He, X.-M., Wen, X.: Fast, unconditionally energy stable large time stepping method for a new Allen-Cahn type square phase-field crystal model. Appl. Math. Lett. 92, 248–255 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  64. Lin, P., Liu, C., Zhang, H.: An energy law preserving c0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys. 227(2), 1411–1427 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Liu, C., Frank, F., Rivière, B.: Numerical error analysis for nonsymmetric interior penalty discontinuous Galerkin method of Cahn-Hilliard equation. Numer. Methods Partial Differ. Equ. 35(4), 1509–1537 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  66. Liu, C., Rivière, B. Numerical analysis of a discontinuous Galerkin method for Cahn-Hilliard-Navier-Stokes equations arXiv:1807.02725v2 [math.NA] (2018)

  67. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179(3-4), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  68. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. Liu, J., Mu, L., Ye, X.: An adaptive discontinuous finite volume method for elliptic problems. J. Comput. Appl. Math. 235(18), 5422–5431 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  70. Liu, J., Mu, L., Ye, X., Jari, R.: Convergence of the discontinuous finite volume method for elliptic problems with minimal regularity. J. Comput. Appl. Math. 236(17), 4537–4546 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  71. Liu, Z.H., Qiao, Z.H.: Wong-Zakai approximations of stochastic Allen-Cahn equation. Int. J. Numer. Anal. Mod. 16, 681–694 (2019)

    MathSciNet  MATH  Google Scholar 

  72. Loverich, J., Hakim, A., Shumlak, U.: A discontinuous Galerkin method for ideal two-fluid plasma equations. Commun. Comput. Phys. 9(2), 240–268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  73. Luo, Y., Feng, M., Xu, Y.: A stabilized mixed discontinuous Galerkin method for the incompressible miscible displacement problem. Bound Value Probl. page 2011: 48 (2011)

  74. Minoli, C.A.A., Kopriva, D.A.: Discontinuous Galerkin spectral element approximations on moving meshes. J. Comput. Phys. 230(5), 1876–1902 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  75. Mu, L., Jari, R.: A posteriori error analysis for discontinuous finite volume methods of elliptic interface problems. J. Comput. Appl. Math. 255, 529–543 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  76. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  77. Nishida, H., Kohashi, S., Tanaka, M.: Construction of seamless immersed boundary phase-field method. Comput. Fluids 164, 41–49 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  78. Oden, J.T., Babuska, I., Baumann, C.E.: A discontinuous Hp finite element method for diffusion problems. J. Comput. Phys. 146, 491–519 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  79. Park, K., Dorao, C.A., Fernandino, M.: Numerical solution of coupled Cahn-Hilliard and Navier-Stokes system using the least-squares spectral element method. In: Proceeding of the ICNMM conference, Washington (2016)

  80. Park, K., Fernandino, M., Dorao, C.A., Gerritsma, M.: The least-squares spectral element method for phase-field models for isothermal fluid mixture. Comput. Math. Appl. 74(8), 1981–1998 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  81. Peraire, J., Persson, P.-O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30(4), 1806–1824 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  82. Rayleigh, L.: On the theory of surface forces II. compressible fluids. Philos. Mag. 33(201), 209–220 (1892)

    Article  MATH  Google Scholar 

  83. Rebholz, L.G., Wise, S.M., Xiao, M.Y.: Penalty-projection schemes for the Cahn-Hilliard Navier-Stokes diffuse interface model of two phase flow, and their connection to divergence-free coupled schemes. Int. J. Numer. Anal. Mod. 15(4-5), 649–676 (2018)

    MathSciNet  MATH  Google Scholar 

  84. Repossi, E., Rosso, R., Verani, M.: A phase-field model for liquid-gas mixtures: mathematical modelling and discontinuous Galerkin discretization. Calcolo 54, 1339–1377 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  85. Rivièrem, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation. Society for industrial and applied mathematics philadelphia (2008)

  86. Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems Part 1. Comput. Geosci. 3, 337–360 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  87. Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  88. Shi, Y., Bao, K., Wang, X.P.: 3D adaptive finite element method for a phase field model for moving contact line problems. Inverse Problem and Imaging 7, 947–959 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  89. Temam, R. Navier-Stokes equations. Publishing, numerical analysis. AMS Chelsea Providence, RI Reprint of the 1984 edition edition (2001)

  90. van der Waals, J.: The thermodynamic theory of capillarity under the hypothesis of a continuous density variation. J. Stat. Phys. 20, 197–244 (1893)

    Google Scholar 

  91. Villela, M., Villar, M., Serfaty, R., Mariano, F., Silveira-Neto, A.: Mathematical modeling and numerical simulation of two-phase flows using Fourier pseudospectral and front-tracking methods: The proposition of a new method. Appl. Math. Model. 52, 241–254 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  92. Wang, F., Han, W.: Reliable and efficient a posteriori error estimates of DG methods for a simplified frictional contact problem. Int. J. Numer. Anal. Mod. 16, 49–62 (2019)

    MathSciNet  MATH  Google Scholar 

  93. Wang, G., He, Y., Li, R.: Discontinuous finite volume methods for the stationary Stokes-Darcy problem. Int. J. Numer. Meth Engrg. 107(5), 395–418 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  94. Wang, J., Wang, Y., Ye, X.: A unified a posteriori error estimator for finite volume methods for the Stokes equations. Math. Methods Appl. Sci. 41(3), 866–880 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  95. Wang, W., Guzmán, J., Shu, C.-W.: The multiscale discontinuous Galerkin method for solving a class of second order elliptic problems with rough coefficients. Int. J. Numer. Anal. Model. 8(1), 28–47 (2011)

    MathSciNet  MATH  Google Scholar 

  96. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal 15, 152–161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  97. Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the generalized Zakharov system. J. Comput. Phys. 229(4), 1238–1259 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  98. Xu, C., Chen, C., Yang, X., He, X.-M.: Numerical approximations for the hydrodynamics coupled binary surfactant phase field model: second order, linear, unconditionally energy stable schemes. Commun. Math. Sci. 17, 835–858 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  99. Yang, J., Du, Q., Zhang, W.: Uniform lpBound of the Allen-Cahn equation and its numerical discretization. Int. J. Numer. Anal. Mod. 15, 213–227 (2018)

    MATH  Google Scholar 

  100. Yang, J., Mao, S., He, X.-M., Yang, X., He, Y.: A diffuse interface model and semi-implicit energy stable finite element method for two-phase magnetohydrodynamic flows. Comput. Meth. Appl. Mech. Eng. 356, 435–464 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  101. Yang, W., Cao, L., Huang, Y.Q., Cui, J.: A new a posteriori error estimate for the interior penalty discontinuous Galerkin method. Int. J. Numer. Anal Mod. 16, 210–224 (2019)

    MathSciNet  MATH  Google Scholar 

  102. Yang, X., Zhao, J., He, X.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343(1), 80–97 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  103. Ye, X.: A new discontinuous finite volume method for elliptic problems. SIAM J. Numer. Anal. 42(3), 1062–1072 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  104. Ye, X.: A discontinuous finite volume method for the Stokes problems. SIAM J. Numer. Anal. 44(1), 183–198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  105. Zhang, J., Chen, C., Yang, X., Chu, Y., Xia, Z.: Efficient, non-iterative, and second-order accurate numerical algorithms for the anisotropic Allen-Cahn Equation with precise nonlocal mass conservation. J. Comput. Appl. Math. 363, 444–463 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  106. Zhang, Z.R., Tang, H.Z.: An adaptive phase field method for the mixture of two incompressible fluids. Comput. Fluids 36(8), 1307–1318 (2007)

    Article  MATH  Google Scholar 

  107. Zheng, H., Shu, C., Chew., Y.T.: A lattice Boltzmann model for multiphase flows with large density ratio. J. Comput. Phys. 218, 353–371 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  108. Zhu, L., Huang, T., Li, L.: A hybrid-mesh hybridizable discontinuous Galerkin method for solving the time-harmonic Maxwell’s equations. Appl. Math. Lett. 68, 109–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Rui Li is financially supported by the National Natural Science Foundation of China (11901372), the Natural Science Foundation of Shaanxi Province (2019JQ-077), and the Fundamental Research Fund for the Central Universities of China (GK201903007, GK201901008); Yali Gao is financially supported by the National Natural Science Foundation of China (11901461) and the Natural Science Foundation of Shaanxi Province (2019JQ-024); Xiaoming He is financially supported by NSF grant DMS-1818642; Jie Chen is financially supported by the XJTLU Key Programme Special Fund (KSF-P-2, KSF-E-50); Zhangxin Chen is financially supported by Foundation CMG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Gao.

Additional information

Communicated by: Ilaria Perugia

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Gao, Y., Chen, J. et al. Discontinuous finite volume element method for a coupled Navier-Stokes-Cahn-Hilliard phase field model. Adv Comput Math 46, 25 (2020). https://doi.org/10.1007/s10444-020-09764-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09764-4

Keywords

Mathematics subject classification (2010)

Navigation