Skip to main content
Log in

An hp-version of the C0-continuous Petrov-Galerkin time stepping method for nonlinear second-order initial value problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We present an hp-version of the C0-continuous Petrov-Galerkin time stepping method for nonlinear second-order initial value problems. We derive a priori error bound in the H1-norm that is fully explicit with respect to the local time steps and the local approximation orders. Moreover, we prove that the hp-version of the C0-continuous Petrov-Galerkin time stepping method based on geometrically refined time steps and on linearly increasing approximation orders yields exponential rates of convergence for solutions with start-up singularities. Numerical examples confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)

    Google Scholar 

  2. Antonietti, P.F., Mazzieri, I., Dal Santo, N., Quarteroni, A.: A high-order discontinuous Galerkin approximation to ordinary differential equations with applications to elastodynamics. IMA J. Numer. Anal. 38, 1709–1734 (2018)

    Article  MathSciNet  Google Scholar 

  3. Babuška, I., Suri, M.: The p and h-p versions of the finite element method, basic principles and properties. SIAM Rev. 36, 578–632 (1994)

    Article  MathSciNet  Google Scholar 

  4. Braess, D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  5. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  6. Brunner, H., Schötzau, D.: Hp-discontinuous Galerkin time-stepping for Volterra integrodifferential equations. SIAM J. Numer. Anal. 44, 224–245 (2006)

    Article  MathSciNet  Google Scholar 

  7. Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear Methods. Wiley, Chichester (1987)

    MATH  Google Scholar 

  8. Delfour, M., Hager, W., Trochu, F.: Discontinuous Galerkin methods for ordinary differential equations. Math. Comp. 36, 455–473 (1981)

    Article  MathSciNet  Google Scholar 

  9. Estep, D., French, D.: Global error control for the continuous Galerkin finite element method for ordinary differential equations. RAIRO modél Math. Anal. Numér. 28, 815–852 (1994)

    Article  MathSciNet  Google Scholar 

  10. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Springer Ser. Comput Math, vol. 31. Springer, Berlin (2002)

    Google Scholar 

  11. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equation I: Nonstiff Problems, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  12. Hairer, E., Wanner, G.: Solving Ordinary Differential Equation II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    Book  Google Scholar 

  13. Wihler, B., Holmand, T.P.: Continuous and discontinuous Galerkin time stepping methods for nonlinear initial value problems with application to finite time blow-up. Numer. Math. 138, 767–799 (2018)

    Article  MathSciNet  Google Scholar 

  14. Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002)

    Article  MathSciNet  Google Scholar 

  15. Huang, J.G., Lai, J.J., Tang, T.: An adaptive time stepping method with efficient error control for second-order evolution problems. Sci. China Math. 56, 2753–2771 (2013)

    Article  MathSciNet  Google Scholar 

  16. Huang, Q.M., Xie, H.H., Brunner, H.: The hp discontinuous Galerkin method for delay differential equations with nonlinear vanishing delay. SIAM J. Sci. Comput. 35, A1604–A1620 (2013)

    Article  MathSciNet  Google Scholar 

  17. Hulme, B.L.: One-step piecewise polynomial Galerkin methods for initial value problems. Math. Comp. 26, 415–426 (1972)

    Article  MathSciNet  Google Scholar 

  18. Hulme, B.L.: Discrete Galerkin and related one-step methods for ordinary differential equations. Math Comp. 26, 881–891 (1972)

    Article  MathSciNet  Google Scholar 

  19. Kyza, I., Metcalfe, S., Wihler, T.P.: Hp-adaptive Galerkin time stepping methods for nonlinear initial value problems. J. Sci. Comput. 75, 111–127 (2018)

    Article  MathSciNet  Google Scholar 

  20. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, Chichester (1991)

    MATH  Google Scholar 

  21. Lai, J.J., Huang, J.G.: An adaptive linear time stepping algorithm for second-order linear evolution problems. Int. J. Numer. Anal. Model. 12, 230–253 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Lesaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp 89–145. Academic Press, New York (1974)

  23. Mustapha, K., Brunner, H., Mustapha, H., Schötzau, D.: An hp-version discontinuous Galerkin method for integro-differential equations of parabolic type. SIAM J. Numer. Anal. 49, 1369–1396 (2011)

    Article  MathSciNet  Google Scholar 

  24. Mustapha, K., Schötzau, D.: Well-posedness of h-p-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)

    Article  MathSciNet  Google Scholar 

  25. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. 85, 67–94 (1959)

    Google Scholar 

  26. Schötzau, D., Schwab, C.: An hp a priori error analysis of the DG time-stepping method for initial value problems. Calcolo 37, 207–232 (2000)

    Article  MathSciNet  Google Scholar 

  27. Schötzau, D., Schwab, C.: Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38, 837–875 (2000)

    Article  MathSciNet  Google Scholar 

  28. Schwab, C.: P- and Hp- Finite Element Methods. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  29. Schötzau, D., Wihler, T.P.: A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations. Numer. Math. 115, 475–509 (2010)

    Article  MathSciNet  Google Scholar 

  30. Walkington, N.: Combined DG-CG time stepping for wave equations. SIAM J. Numer. Anal. 52, 1398–1417 (2014)

    Article  MathSciNet  Google Scholar 

  31. Wang, L.N., Yi, L.J.: An h-p version of the continuous Petrov-Galerkin method for Volterra delay-integro-differential equations. Adv. Comput. Math. 43, 1437–1467 (2017)

    Article  MathSciNet  Google Scholar 

  32. Werder, T., Gerdes, K., Schötzau, D., Schwab, C.: Hp-discontinuous Galerkin time stepping for parabolic problems. Comput. Methods Appl. Mech. Engrg. 190, 6685–6708 (2001)

    Article  MathSciNet  Google Scholar 

  33. Wihler, T.P.: An a priori error analysis of the hp-version of the continuous Galerkin FEM for nonlinear initial value problems. J. Sci. Comput. 25, 523–549 (2005)

    Article  MathSciNet  Google Scholar 

  34. Wihler, T.P.: A note on a norm-preserving continuous Galerkin time stepping scheme. Calcolo 54, 657–667 (2017)

    Article  MathSciNet  Google Scholar 

  35. Yi, L.J.: An \(l^{\infty }\)-error estimate for the h-p version continuous Petrov-Galerkin method for nonlinear initial value problems. East Asian J. Appl. Math. 5, 301–311 (2015)

    Article  MathSciNet  Google Scholar 

  36. Yi, L.J.: An h-p version of the continuous Petrov-Galerkin finite element method for nonlinear Volterra integro-differential equations. J. Sci. Comput. 65, 715–734 (2015)

    Article  MathSciNet  Google Scholar 

  37. Yi, L.J., Guo, B.Q.: An h-p version of the continuous Petrov-Galerkin finite element method for Volterra integro-differential equations with smooth and nonsmooth kernels. SIAM J. Numer. Anal. 53, 2677–2704 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for many constructive and valuable suggestions, which considerably improved the presentation of the paper.

Funding

The work of this author is supported in part by the National Natural Science Foundation of China (Nos. 11771298, 11871043, 11301343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Yi.

Additional information

Communicated by: Lourenco Beirao da Veiga

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Yi, L. An hp-version of the C0-continuous Petrov-Galerkin time stepping method for nonlinear second-order initial value problems. Adv Comput Math 46, 56 (2020). https://doi.org/10.1007/s10444-020-09800-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09800-3

Keywords

Mathematics Subject Classification 2010

Navigation