Skip to main content
Log in

Solving partial differential equations on (evolving) surfaces with radial basis functions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Meshfree, kernel-based spatial discretisations are recent tools to discretise partial differential equations on surfaces. The goals of this paper are to analyse and compare three different meshfree kernel-based methods for the spatial discretisation of semi-linear parabolic partial differential equations (PDEs) on surfaces, i.e. on smooth, compact, connected, orientable, and closed (d − 1)-dimensional submanifolds of \(\mathbb {R}^{d}\). The three different methods are collocation, the Galerkin, and the RBF-FD method, respectively. Their advantages and drawbacks are discussed, and previously known theoretical results are extended and numerically verified. Finally, a significant part of this paper is devoted to solving PDEs on evolving surfaces with RBF-FD, which has not been done previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsing. Acta. Metal. 27, 1085–1095 (1979)

    Google Scholar 

  2. Barreira, M.R.: Numerical solution of non-linear partial differential equations on triangulated surfaces, PhD thesis University of Sussex (2009)

  3. Barreira, R., Elliott, C.M., Madzvamuse, A.: The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol. 63, 1095–1119 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Beatson, R.K., Greengard, L. In: Ainsworth, M., Levesley, J., Light, W., Marletta, M. (eds.) : A short course on fast multipole methods, in Wavelets, multilevel methods and elliptic PDEs. 7th EPSRC numerical analysis summer school, University of Leicester, Leicester, GB, July 8–19, 1996, pp 1–37. Clarendon Press, Oxford (1997)

  5. Berdorf, M., Sbalzarini, I.F., Koumoutsakos, P.: A Lagrangian particle method for reaction-diffusion systems on deforming surfaces. J. Math. Biol. 61, 649–663 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Brezis, H., Mironescu, P.: Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ. 1, 387–404 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Brezis, H., Mrionescu, P.: Composition in fractional Sobolev spaces. Discrete and Continuous Dynamical Systems 7, 241–246 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Chaplain, M., Ganesh, M., Graham, I.: Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. Mathematical Biology 42, 387–423 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Cheung, K.C., Ling, L.: Meshless collocation methods with graph Laplacian for PDEs on folded surface. Neural Parallel Sci. Comput. 25, 79–89 (2017)

    MathSciNet  Google Scholar 

  10. Choi, Y., Jeong, D., Lee, S., Yoo, M., Kim, J.: Motion by mean curvature of curves on surfaces using the allen-Cahn equation. Internat J. Engrg. Sci. 97, 126–132 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Driscoll, J.R., Healy, D.M.: Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15, 202–250 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Dziuk, G., Elliott, C.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27, 262–292 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Dziuk, G.: Surface finite elements for parabolic equations. J. Comput. Math. 25, 385–407 (2007)

    MathSciNet  Google Scholar 

  14. Dziuk, G., Elliott, C.M.: Eulerian finite element method for parabolic PDEs on implicit surfaces. Interfaces Free Bound. 10, 119–138 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Eilks, C., Elliott, C.M.: Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method. J. Comput. Phys. 227, 9727–9741 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Flyer, N., Fornberg, B., Bayona, V., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: I interpolation and accuracy. J. Comp. Phys. 321, 21–38 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Flyer, N., Wright, G.: Transport schemes on a sphere using radial basis functions. J. Comp. Phys. 226, 1059–1084 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Flyer, N.: A radial basis function method for the shallow water equations on a sphere. Proc. R. Soc. A 465, 1949–1976 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Fuselier, E., Wright, G.: Scattered data interpolation on embedded submanifolds with restricted positive definite kernels: Sobolev error estimates. SIAM J. Numer. Anal. 50, 1753–1776 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Fuselier, E., Wright, G.: A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 56, 535–565 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Fuselier, E.J., Hangelbroek, T., Narcowich, F.J., Ward, J.D., Wright, G.B.: Localized bases for kernel spaces on the unit sphere. SIAM J. Numer. Anal. 51, 2538–2562 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Giesl, P., Wendland, H.: Meshless collocation: eError estimates with application to dynamical systems. SIAM J. Numer. Anal. 45, 1723–1741 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. Computer Graphics (SIGGRAPH’92 Proceedings) 26, 71–78 (1992)

    Google Scholar 

  25. Hörmander, L.: The Analysis of Linear Partial Differential Operators III: Pseudo- Differential Operat. Springer, Berlin (1994)

    Google Scholar 

  26. Künemund, J., Narcowich, F.J., Ward, J.D., Wendland, H.: A high-order meshless Galerkin method for semilinear parabolic equations on spheres. Numer. Math. 142, 383–419 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Le Gia, Q.T.: Approximation of parabolic PDEs on spheres using spherical basis functions. Adv. Comput. Math. 22, 377–397 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Le Gia, Q.T., Sloan, I., Wendland, H.: Multiscale RBF collocation for solving PDEs on spheres. Numer. Math. 121, 99–125 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Lehto, E., Shankar, V., Wright, G.B.: A radial basis function (RBF) compact finite difference (FD) scheme for reaction-diffusion equations on surfaces. SIAM J. Sci. Comput. 39, A2129–A2151 (2017)

    MathSciNet  MATH  Google Scholar 

  30. E.G.M: The addition formula for the eigenfunctions of the Laplacian. Adv. Math. 18, 102–107 (1975)

  31. Macdonald, C.B., Ruuth, S.J.: The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput. 31, 4330–4350 (2009/10)

  32. März, T., Macdonald, C.B.: Calculus on surfaces with general closest point functions. SIAM J. Numer. Anal. 50, 3303–3328 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Morton, T.M., Neamtu, M.: Error bounds for solving pseudodifferential equatons on spheres by collocation with zonal kernels. J. Approx. Theory 114, 242–268 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Müller, C.: Spherical Harmonics. Springer, Berlin (1966)

    MATH  Google Scholar 

  35. Narcowich, F.J., Rowe, S.T., Ward, J.D.: A novel Galerkin method for solving pdes on the sphere using highly localized kernel bases. Math. Comput. 86, 197–231 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Petras, A., Ling, L., Piret, C., Ruuth, S.J.: A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces. J. Comput. Phys. 381, 146–161 (2019)

    MathSciNet  Google Scholar 

  37. Petras, A., Ling, L., Ruuth, S.J.: An RBF-FD closest point method for solving PDEs on surfaces. J. Comput. Phys. 370, 43–57 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Petras, A., Ruuth, S.J.: pDEs on moving surfaces via the closest point method and a modified grid based particle method. J. Comput. Phys. 312, 139–156 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Piret, C.: The orthogonal gradients method: a radial basis functions method for solving partial differential equations on arbitrary surfaces. J. Comput. Phys. 231, 4662–4675 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Schnakenberg, J.: Simple chimical reaction systems with limit cycle behaviour. J. Theor. Biol. 81, 389–400 (1979)

    MathSciNet  Google Scholar 

  41. Shankar, V., Narayan, A., Kirby, R.M.: rBF-LOI: augmenting radial basis functions (RBFs) with least orthogonal interpolation (LOI) for solving PDEs on surfaces. J. Comput. Phys. 373, 722–735 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Shankar, V., Wright, G.B., Kirby, R.M., Fogelson, A.L.: A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 63, 745–768 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Sogge, C.D.: Eigenfunction and Bochner Riesz estimates on manifolds with boundary. Math. Res. Lett. 9, 205–216 (2002)

    MathSciNet  MATH  Google Scholar 

  44. Taylor, M.E.: Partial Differential Equations III, vol. 117 of Applied Mathematical Sciences. Springer, New York (1996)

    Google Scholar 

  45. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    MathSciNet  MATH  Google Scholar 

  46. Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  47. Wendland, H.: On the stability of meshless symmetric collocation for boundary value problems. BIT 47, 455–468 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Wendland, H.: A high-order approximation method for semilinear parabolic equations on spheres. Math. Comput. 82, 227–245 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Womersley, R.S.: Minimum energy points on the sphere \(\mathbb {S}^{2}\). http://web.maths.unsw.edu.au/~rsw/sphere/energy/index.html+, 2003, Accessed: November 2, 2019

  50. Wright, G.B.: http://math.boisestate.edu/wright/quad_weights/+. Accessed: November 2, 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Wendland.

Additional information

Communicated by: Tobin Driscoll

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendland, H., Künemund, J. Solving partial differential equations on (evolving) surfaces with radial basis functions. Adv Comput Math 46, 64 (2020). https://doi.org/10.1007/s10444-020-09803-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09803-0

Keywords

Mathematics subject classification (2010)

Navigation