Skip to main content
Log in

Spectral collocation method for nonlinear Caputo fractional differential system

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A spectral collocation method is developed to solve a nonlinear Caputo fractional differential system. The main idea is to solve the corresponding system of weakly singular nonlinear Volterra integral equations (VIEs). The convergence analysis in matrix form shows that the presented method has spectral convergence. Numerical experiments are carried out to confirm theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allahviranloo, T., Gouyandeh, Z., Armand, A., Simos, T.: Numerical solutions for fractional differential equations by Tau-Collocation method. Appl. Math. Comput. 271, 979–990 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Atabakzadeh, M., Akrami, M., Erjaee, G.: Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations. Appl. Math. Model. 37(20-21), 8903–8911 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Brunner, H.: Collocation methods for Volterra integral and related functional differential equations, vol. 15. Cambridge University Press (2004)

  4. Chen, S., Shen, J., Wang, L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85, 603–1638 (2016)

    MathSciNet  Google Scholar 

  5. Diethelm, K.: The analysis of fractional differential equations. Springer, Berlin (2010)

  6. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1-4), 3–22 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Doha, E., Bhrawy, A., Baleanu, D., Ezz-Eldien, S.: On shifted Jacobi spectral approximations for solving fractional differential equations. Appl. Math. Comput. 219(15), 8042–8056 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Faires, J.D., Burden, R.L.: Numerical methods. Brooks/Cole Pub Co. (1998)

  9. Ghoreishi, F., Mokhtary, P.: Spectral collocation method for multi-order fractional differential equations. J. Comput. Appl. Math. 11:(5)(1350072), 1–23 (2014)

  10. Graef, J.R., Kong, L., Wang, M.: A Chebyshev spectral method for solving Riemann-Liouville fractional boundary value problems. Appl. Math. Comput. 241, 140–150 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Gu, Z.: Spectral collocation method for system of weakly singular Volterra integral equations. Adv. Comput. Math. 45, 2677–2699 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 37, 1–7 (2005)

    Google Scholar 

  13. Jin, B., Lazarov, R., Lu, X., Zhou, Z.: A simple finite element method for boundary value problems with a Riemann-Liouville derivative. J. Comput. Appl. Math. 293, 94–111 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445–466 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Kasmaei, H.D., Senol, M.: On the numerical solution of nonlinear fractional-integro differential equations. Trends Math. Sci. 3(5), 118–127 (2017)

    Google Scholar 

  16. Kopteva, N., Stynes, M.: Analysis and numerical solution of a Riemann-Liouville fractional derivarive two-point boundary value problem 43, 77–99 (2017)

  17. Li, C., Zeng, F.: Finite difference methods for fractional differential equations. Int. J. Bifurcat. Chaos 22, (4)1230014, pp. 28 (2012)

  18. Li, C., Zeng, F.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 34(2), 149–179 (2013)

    Article  MathSciNet  Google Scholar 

  19. Li, C., Zeng, F., Liu, F.: Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15(3), 383–406 (2012)

    Article  MathSciNet  Google Scholar 

  20. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Liang, H., Stynes, M.: Collocation methods for general Caputo two-point boundary value problems. J. Sci. Comput. 76(1), 390–425 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Liang, H., Stynes, M.: Collocation methods for general Riemann-Liouville two-point boundary value problems. Adv. Comput. Math. 45(2), 897–928 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Lokenath, D.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Meerschaert, M.M., Scheffler, H.-P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211(1), 249–261 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Momani, S.: A numerical scheme for the solution of multi-order fractional differential equations. Appl. Math. Comput. 182(1), 761–770 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Pedas, A., Tamme, E.: Spline collocation methods for linear multi-term fractional differential equations. J. Comput. Appl. Math. 236(2), 167–176 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Pedas, A., Tamme, E.: Piecewise polynomial collocation for linear boundary value problems of fractional differential equations. J. Comput. Appl. Math. 236(13), 3349–3359 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Rivero, M., Trujillo, J.J., Vzquez, L., Velasco, M.P.: Fractional dynamics of populations. Appl. Math. Comput. 218(3), 1089–1095 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Shawagfeh, N.T.: Analytical approximate solutions for nonlinear fractional differential equations. Appl. Math. Comput. 131(2-3), 517–529 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Sheng, C., Jie, S.: A hybrid spectral element method for fractional two-point boundary value problems. Numer. Math. Theory Methods Appl. 10(2), 437–464 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Stynes, M., Gracia, J.L.: A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 35(2), 698–721 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Vong, S., Lyu, P., Chen, X., Lei, S.L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives. Numer. Algorithm. 72(1), 195–210 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Wang, C., Wang, Z., Wang, L.: A spectral collocation method for nonlinear fractional boundary value problems with a Caputo derivative. J. Sci. Comput. 76(1), 166–188 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Yang, Y., Ma, H.: Fractional collocation methods for multi-term linear and nonlinear fractional differential equations with variable coefficients on the half line. Int. J. Comput. Math. 96(2), 299–416 (2019)

    MathSciNet  Google Scholar 

  36. Yin, X., Zhou, J., Bing, H.: Finite difference approximations for fractional advection-dispersion equations. J. Comput. Appl. Math. 172(1), 65–77 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Zaky, M.: Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions. J. Comput. Appl. Math. 357(1), 103–122 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Zaky, M., Ameen, I.G.: On the rate of convergence of spectral collocation methods for nonlinear multi-order fractional initial value problems. J. Comput. Appl. Math. 38(3), 144–162 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Zaky, M.A., Ameen, I.G.: A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra-Fredholm integral equations with smooth solutions. Numerical Algorithms. https://doi.org/10.1007/s11075-019-00743-5 (2019)

  40. Zayernouri, M., Karniadakis, GE.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), A40–A62 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of Guangdong Province of China (2017A030310636, 2018A030313236), the Opening Project of Guangdong High Performance Computing Society (2017060104), and the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University (2016001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Gu.

Additional information

Communicated by: Martin Stynes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Z. Spectral collocation method for nonlinear Caputo fractional differential system. Adv Comput Math 46, 66 (2020). https://doi.org/10.1007/s10444-020-09808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09808-9

Keywords

Mathematics Subject Classification (2010)

Navigation