Skip to main content
Log in

Stability and convergence of some parallel iterative subgrid stabilized algorithms for the steady Navier-Stokes equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Based on finite element discretization and a fully overlapping domain decomposition, we propose and study some parallel iterative subgrid stabilized algorithms for the simulation of the steady Navier-Stokes equations with high Reynolds numbers, where the quadratic equal-order elements are used for the velocity and pressure approximations, and the subgrid-scale model based on an elliptic projection is employed to penalize instability introduced by the dominant convective term in the Navier-Stokes system. In the present algorithms, each subproblem is defined in the whole domain with the vast majority of the degrees of freedom associated with the particular subdomain that it is responsible for and hence can be solved in parallel with other subproblems. All of the subproblems are nonlinear and are independently solved by some iterative methods. Stability and convergence of the proposed parallel iterative algorithms are analyzed under some (strong) uniqueness conditions. Furthermore, new results of stopping criteria for nonlinear iterations are derived. Numerical examples which verify the effectiveness of the proposed algorithms are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  2. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations. Springer, Berlin (1979)

  3. Girault, V., Raviart, P.A.: Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

  4. Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P. G., Lions, J. L. (eds.) Handbook of Numerical Analysis, Vol. IX, Numerical Methods for Fluids Part, p 3. Elsevier Scinence Publisher, Amsterdam (2003)

  5. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Element and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford (2005)

  6. Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69, 881–909 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problem. Adv. Comput. Math. 14, 293–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. He, Y.N., Xu, J.C., Zhou, A.H., Li, J.: Local and parallel finite element algorithms for the Stokes problem. Numer. Math. 109, 415–434 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shang, Y.Q., Wang, K.: Local and parallel finite element algorithms based on two-grid discretizations for the transient Stokes equations. Numer. Algor. 54, 195–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, Y.D., Han, J.Y.: The multilevel mixed finite element discretizations based on local defect-correction for the Stokes eigenvalue problem. Comput. Meth. Appl. Mech. Engrg. 289, 249–266 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bi, H., Han, J.Y., Yang, Y.D.: Local and parallel finite element algorithms for the transmission eigenvalue problem. J. Sci. Comput. 78, 351–375 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, Y.N., Xu, J.C., Zhou, A.H.: Local and parallel finite element algorithms for the Navier-Stokes problem. J. Comput. Math. 24, 227–238 (2006)

    MathSciNet  MATH  Google Scholar 

  13. He, Y.N., Mei, L.Q., Shang, Y.Q.: Nowton iterative parallel finite element algorithm for the steady Navier-Stokes equations. J. Sci. Comput 44, 92–106 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shang, Y.Q., He, Y.N., Kim, D.: A new parallel finite element algorithm for the stationary Navier-Stokes equations. Finite Elem. Anal. Des. 47, 1262–1279 (2011)

    Article  MathSciNet  Google Scholar 

  15. Shang, Y.Q., He, Y.N.: A parallel Oseen-linearized algorithm for the stationary Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 209, 172–183 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, Y.H., Hou, Y.R., Li, Y.: Shan others, Local and parallel finite element algorithm for stationary incompressible magnetohydrodynamics. Numer. Methods Partial Differ. Equ. 33, 1513–1539 (2017)

    Article  MATH  Google Scholar 

  17. Tang, Q.L., Huang, Y.Q.: Local and parallel finite flement algorithm based on Oseen-type iteration for the stationary incompressible MHD flow. J. Sci. Comput. 70, 1–26 (2017)

    Article  MathSciNet  Google Scholar 

  18. Shang, Y.Q., He, Y.N.: Parallel iterative finite element algorithms based on full domain decomposition for the stationary Navier-Stokes equations. Appl. Numer. Math. 60, 719–737 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zheng, B., Shang, Y.Q.: Parallel iterative stabilized finite element algorithms based on the lowest equal-order elements for the stationary Navier-Stokes equations. Appl. Math. Comput. 357, 35–56 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Yu, J.P., Shi, F., Zheng, H.B.: Local and parallel finite element algorithms based on the partition of unity for the Stokes problem. SIAM J. Sci. Comput. 36(5), C547–C567 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zheng, H.B., Yu, J.P., Shi, F.: Local and parallel finite element algorithm based on the partition of unity for incompressible flows. J. Sci. Comput. 65, 512–532 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Du, G.Z., Zuo, L.Y.: A parallel partition of unity scheme based on two-grid discretizations for the Navier-Stokes problem. J. Sci. Comput. 75, 1445–1462 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bank, R.E., Holst, M.: A new paradigm for parallel adaptive meshing algorithms. SIAM J. Sci. Comput. 22, 1411–1443 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bank, R.E., Jimack, P.K.: A new parallel domain decomposition method for the adaptive finite element solution of elliptic partial differential equations, Concurr. Comput. Pract. Expert 13, 327–350 (2001)

    Article  MATH  Google Scholar 

  25. Mitchell, W.F.: Parallel adaptive multilevel methods with full domain partitions. Appl. Numer. Anal. Comput. Math. 1(1-2), 36–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Layton, W.: A connection between subgrid scale eddy viscosity and mixed methods. Appl. Math. Comput. 133, 147–157 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Guermond, J., Marra, A., Quartapelle, L.: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers. Comput. Methods Appl. Mech. Engrg. 195, 5857–5876 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kaya, S., Lyton, W., Riviere, B.: Subgrid stabilized defect correction methods for the Navier-Stokes equations. SIAM J. Numer. Anal. 44, 1639–1654 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Y., He, Y.N.: Assessment of subgrid-scale models for the incompressible Navier-Stokes equations. J. Comput. Appl. Math. 234, 593–604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shang, Y.Q.: A two-level subgrid stabilized Oseen iterative method for the steady Navier-Stokes equations. J. Comput. Phys. 233, 210–226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shang, Y.Q.: A new two-level defect-correction method for the steady Navier-Stokes equations. J. Comput. Appl. Math. 391, 113009 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Yang, X.C., Shang, Y.Q., Zheng, B.: A simplified two-level subgrid stabilized method with backtracking technique for incompressible flows at high Reynolds numbers. Numer. Methods Partial Differ. Equ. 37, 2067–2088 (2020)

    Article  MathSciNet  Google Scholar 

  33. Shang, Y.Q.: A parallel subgrid stabilized finite element method based on fully overlapping domain decomposition for the Navier-Stokes equations. J. Math. Anal. Appl. 403, 667–679 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shang, Y.Q., Huang, S.M.: A parallel subgrid stabilized finite element method based on two-grid discretization for simulation of 2D/3D steady incompressible flows. J. Sci. Comput. 60, 564–583 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolations. Comput. Methods Appl. Mech. Engrg. 59, 85–99 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg. 73, 173–189 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. Blasco, J., Codina, R.: Stabilization finite elements method for the transient Navier-Stokes equations based on a pressure gradient projection. Comput. Methods Appl. Mech. Engrg. 182, 277–300 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Becker, R., Braack, M.: A finite elements pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38, 173–199 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zheng, H.B., Shan, L., Hou, Y.R.: A quadratic equal-order stabilized method for Stokes problem based on two local Gauss integrations. Numer. Methods Partial Differ. Equ. 26, 180–1190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Qiu, H.L., An, R., Mei, L.Q., Xue, C.F.: Two-step algorithms for the stationary incompressible Navier-Stokes equations with friction boundary conditions. Appl. Numer. Math. 120, 97–114 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zheng, B., Shang, Y.Q.: Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows. Calcolo 57, 34 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zheng, B., Shang, Y.Q.: A parallel stabilized finite element variational multiscale method based on fully overlapping domain decomposition for the incompressible Navier-Stokes equations. Appl. Numer. Math. 159, 128–158 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, K.T., Huang, A.X., Huang, Q.H.: Finite Element Methods and Their Applications. Academic Press, Beijing (2006)

    Google Scholar 

  45. Adams, R.: Sobolev Spaces. Academaic Press Inc, New York (1975)

    MATH  Google Scholar 

  46. He, Y.N., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 198, 1351–1359 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kechkar, N., Silvester, D.: Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58, 1–10 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20 (3-4), 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Erturk, E., Corke, T.C., Gokcol, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48, 747–774 (2005)

    Article  MATH  Google Scholar 

  50. Liu, Q.F., Hou, Y.R.: A postprocess mixed finite element method for the Navier-Stokes equations. Int. J. Comput. Fluid Dyn. 23, 461–475 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions and comments, which led to an improvement of the paper.

Funding

The work was supported by the Natural Science Foundation of China (No. 11361016), Cooperative Program of Guizhou Provincial Department of Science and Technology, China (No. Qian Ke He LH [2015]7042), and the Natural Science Foundation of Chongqing Municipality, China (No. cstc2021jcyj-msxmX1044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqiang Shang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Paul Houston

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, B., Qin, J. & Shang, Y. Stability and convergence of some parallel iterative subgrid stabilized algorithms for the steady Navier-Stokes equations. Adv Comput Math 48, 35 (2022). https://doi.org/10.1007/s10444-022-09950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09950-6

Keywords

Mathematics Subject Classification (2010)

Navigation