Skip to main content
Log in

High-order conservative energy quadratization schemes for the Klein-Gordon-Schrödinger equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we design two classes of high-accuracy conservative numerical algorithms for the nonlinear Klein-Gordon-Schrödinger system in two dimensions. By introducing the energy quadratization technique, we first transform the original system into an equivalent one, where the energy is modified as a quadratic form. The Gauss-type Runge-Kutta method and the Fourier pseudo-spectral method are then employed to discretize the reformulation system in time and space, respectively. The fully discrete schemes inherit the conservation of mass and modified energy and can reach high-order accuracy in both temporal and spatial directions. In order to complement the proposed schemes and speed up the calculation, we also develop another class of conservative schemes combined with the prediction-correction technique. Numerous experimental results are reported to demonstrate the efficiency and high accuracy of the new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makhankov, V.G.: Dynamics of classical solitons (in non-integrable systems). Phys. Rep. 35, 1–128 (1978)

    Article  MathSciNet  Google Scholar 

  2. Bao, W., Zhao, X.: A uniformly accurate (UA) multiscale time integrator fourier pseoduspectral method for the Klein-Gordon-SchröDinger equations in the nonrelativistic limit regime. Numer. Math. 135, 833–873 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fukuda, I., Tsutsumi, M.: On coupled Klein-Gordon-SchröDinger equations II. J. Math. Anal. Appl. 66, 358–378 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo, B.: Global solution for some problem of a class of equations in interaction of complex SchröDinger field and real Klein-Gordon field. Sci. China A 25, 897–910 (1982)

    Google Scholar 

  5. Ohta, M.: Stability of stationary states for the coupled Klein-Gordon-Schrödinger equations. Nonlinear Anal. 27, 455–461 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo, B., Miao, C.: Global existence and asymptotic behavior of solutions for the coupled Klein-Gordon-Schrödinger equations. Sci. China A 38, 1444–1456 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Bao, W., Dong, X., Wang, S.: Singular limits of Klein-Gordon-Schrödinger equations. Multiscale Model. Simul. 8(5), 1742–1769 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, M., Zhou, Y.: The periodic wave solutions for the Klein-Gordon-Schrödinger equations. Phys. Lett. A 318, 84–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, T.: Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schrödinger equation. J. Math. Anal. Appl. 412, 155–167 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, T., Zhao, X., Jiang, J.: Unconditional and optimal h2-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions. Adv. Comput. Math. 44, 477–503 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, J., Liang, D., Wang, Y.: Analysis of a conservative high-order compact finite difference scheme for the Klein-Gordon-Schrödinger equation. J. Comput. Appl. Math. 358, 84–96 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, M., Shi, D., Wang, J., Ming, W.: Unconditional superconvergence analysis of the conservative linearized Galerkin FEMs for nonlinear Klein-Gordon-Schrödinger equation. Appl. Numer. Math. 142, 47–63 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kong, L., Liu, R., Xu, Z.: Numerical simulation of interaction between SchröDinger field and Klein-Gordon field by multisymplectic method. Appl. Math. Comput. 181, 342–350 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Hong, J., Jiang, S., Li, C.: Explicit multi-symplectic methods for Klein-Gordon-SchröDinger equations. J. Comput. Phys. 228, 3517–3532 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bao, W., Yang, L.: Efficient and accurate numerical methods for the Klein-Gordon-SchröDinger equations. J. Comput. Phys. 225, 1863–1893 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hong, Q., Wang, Y., Wang, J.: Optimal error estimate of a linear fourier pseudo-spectral scheme for two dimensional Klein-Gordon-SchröDinger equations. J. Math. Anal. Appl. 468, 817–838 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, S., Zhang, L.: A class of conservative orthogonal spline collocation schemes for solving coupled Klein-Gordon-SchröDinger equations. Appl. Math. Comput. 203, 799–812 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Griffiths, D.F., Higham, D.J.: Numerical methods for ordinary differential equations: initial value problems. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  19. Cooper, G.J.: Stability of Runge-Kutta methods for trajectory problems. IMA J. Numer. Anal. 7(1), 1–13 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, vol. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Calvo, M.P., Iserles, A., Zanna, A.: Numerical solution of isospectral flows. Math. Comput. 66, 1461–1486 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, X., Ju, L.: Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Engrg. 315, 691–712 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, X., Yu, H.: Efficient second order unconditionally stable schemes for a phase field moving contact line model using an invariant energy quadratization approach. SIAM J. Sci. Comput. 40(3), B889–B914 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56(5), 2895–2912 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gong, Y., Zhao, J.: Energy-stable Runge-Kutta schemes for gradient flow models using the energy quadratization approach. Appl. Math. Lett. 94, 224–231 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gong, Y., Zhao, J., Wang, Q.: Arbitrary high-order unconditionally energy stable schemes for thermodynamically consistent gradient flow models. SIAM J. Sci. Comput. 42, B135–B156 (2020)

    Article  MATH  Google Scholar 

  30. Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order linear energy stable schemes for gradient flow models. J. Comput. Phys. 419, 109610 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jiang, C., Cai, W., Wang, Y.: A linearly implicit and local energy-preserving scheme for the Sine-Gordon equation based on the invariant energy quadratization approach. J. Sci. Comput. 80(3), 1629–1655 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, H., Hong, Q.: An efficient energy-preserving algorithm for the Lorentz force system. Appl. Math. Comput. 358, 161–168 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Jiang, C., Wang, Y., Gong, Y.: Arbitrarily high-order energy-preserving schemes for the Camassa-Holm equation. Appl. Numer. Math. 151, 85–97 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, X., Gong, Y., Zhang, L.: Linear high-order energy-preserving schemes for the nonlinear SchröDinger equation with wave operator using the scalar auxiliary variable approach. J. Sci. Comput. 88, 20 (2021)

    Article  MATH  Google Scholar 

  35. Fukuda, I., Tsutsumi, M.: On the Yukawa-coupled Klein-Gordon-SchröDinger equations in three space dimensions. Proc. Jpn. Acad. 51, 402–405 (1975)

    MATH  Google Scholar 

  36. Wang, B., Lange, H.: Attractors for the Klein-Gordon-SchröDinger equation. J. Math. Phys. 40, 2445–2457 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gong, Y., Wang, Q., Wang, Y., Cai, J.: A conservative Fourier pseudo-spectral method for the nonlinear SchröDinger equation. J. Comput. Phys. 328, 354–370 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, Z., Gong, Y., Zhao, J.: A remark on the invariant energy quadratization (IEQ) method for preserving the original energy dissipation laws, arXiv:2111.12920v1 (2021)

  39. Zhao, J.: A revisit of the energy quadratization method with a relaxation technique. Appl. Math. Lett. 120, 107331 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Jiang, M., Zhang, Z., Zhao, J.: Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation. J. Comput. Phys. 456, 110954 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cheng, Q., Liu, C., Shen, J.: A new Lagrange multiplier approach for gradient flows. Comput. Methods Appl. Mech. Engrg. 367, 113070 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gong, Y., Hong, Q., Wang, Q.: Supplementary variable method for thermodynamically consistent partial differential equations. Comput. Methods Appl. Mech. Engrg. 381, 113746 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Yuezheng Gong from Nanjing University of Aeronautics and Astronautics for inspiring discussions on numerical computation. The authors would also like to thank the referees for their careful reading and constructive comments and suggestions which improve the quality of the manuscript.

Funding

The first author is supported by a grant JZ2021HGQA0246 from the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: Tobin Driscoll

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A

Appendix: A

We take 2-stage GRK method as an example to illustrate the process of Scheme 3.2 in detail. For the iterative values \({P_{i}^{n}}, {Q_{i}^{n}}\) and \({{\Phi }_{i}^{n}}\ (i=1,2)\), we first denote

$$ {X_{i}^{n}}:=\frac{({P_{i}^{n}})^{2}+({Q_{i}^{n}})^{2}}{\mathcal{K}^{n}},\quad {Y_{i}^{n}}:=\frac{{P_{i}^{n}}{{\Phi}_{i}^{n}}}{\mathcal{K}^{n}},\quad {Z_{i}^{n}}:=\frac{{Q_{i}^{n}}{{\Phi}_{i}^{n}}}{\mathcal{K}^{n}}. $$

Then, from the last three rows of (3.3), one has

$$ \begin{array}{@{}rcl@{}} \dot{K}_{i}^{n}&=&\frac{\langle\dot{\Phi}_{i}^{n},({P_{i}^{n}})^{2}+({Q_{i}^{n}})^{2}\rangle}{2\mathcal{K}^{n}} +\frac{\langle\dot{P}_{i}^{n},{P_{i}^{n}}{{\Phi}_{i}^{n}}\rangle}{\mathcal{K}^{n}} +\frac{\langle\dot{Q}_{i}^{n},{Q_{i}^{n}}{{\Phi}_{i}^{n}}\rangle}{\mathcal{K}^{n}}\\ &=&\frac{1}{2}\langle \dot{\Phi}_{i}^{n}, {X_{i}^{n}}\rangle +\langle \dot{P}_{i}^{n}, {Y_{i}^{n}}\rangle+\langle \dot{Q}_{i}^{n}, {Z_{i}^{n}}\rangle \triangleq \mathrm{I}_{i}^{n}+\text{II}_{i}^{n}+\text{III}_{i}^{n}, \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} \dot{\Phi}_{i}^{n}&=&W^{n}+\tau\sum\limits_{j=1}^{2}a_{ij}\big[({\Delta}_{f}-\beta^{2}) {{\Phi}_{j}^{n}}+{K_{j}^{n}}{X_{j}^{n}}\big]\\ &=&W^{n}+\tau\sum\limits_{j=1}^{2}a_{ij}\big[({\Delta}_{f}-\beta^{2})({\Phi}^{n}+\tau \sum\limits_{\ell=1}^{2}a_{j\ell}\dot{\Phi}_{\ell}^{n})+(K^{n}+\tau\sum\limits_{\ell=1}^{2}a_{j\ell} \dot{K}_{\ell}^{n}){X_{j}^{n}}\big]. \end{array} $$

The above equality is rewritten explicitly and it yields

$$ \begin{array}{@{}rcl@{}} &\mathcal{A}\dot{\Phi}_{1}^{n}+\mathcal{B}\dot{\Phi}_{2}^{n}={{\Gamma}_{1}^{n}} +\tau^{2}(a_{11}^{2}{X_{1}^{n}}+a_{12}a_{21}{X_{2}^{n}})\dot{K}_{1}^{n} +\tau^{2}(a_{11}a_{12}{X_{1}^{n}}+a_{12}a_{22}{X_{2}^{n}})\dot{K}_{2}^{n},\\ &\mathcal{C}\dot{\Phi}_{1}^{n}+\mathcal{A}\dot{\Phi}_{2}^{n}={{\Gamma}_{2}^{n}} +\tau^{2}(a_{21}a_{11}{X_{1}^{n}}+a_{22}a_{21}{X_{2}^{n}})\dot{K}_{1}^{n} +\tau^{2}(a_{21}a_{12}{X_{1}^{n}}+a_{22}^{2}{X_{2}^{n}})\dot{K}_{2}^{n}, \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} \mathcal{A}&=&1-\tau^{2}(a_{11}^{2}+a_{12}a_{21})({\Delta}_{f}-\beta^{2}),\ \ \mathcal{B}=-2\tau^{2}a_{11}a_{12}({\Delta}_{f}-\beta^{2}),\ \ \mathcal{C}=-2\tau^{2}a_{11}a_{21}({\Delta}_{f}-\beta^{2}),\\ {{\Gamma}_{i}^{n}}&=&W^{n}+\tau(a_{i1}+a_{i2})({\Delta}_{f}-\beta^{2}){\Phi}^{n} +\tau(a_{i1}{X_{1}^{n}}+a_{i2}{X_{2}^{n}})K^{n}, \end{array} $$

and the coefficient property of 2-stage GRK method a11 = a22 was used. Some simple calculations imply that

$$ \dot{\Phi}_{i}^{n}={A_{i}^{n}}+{B_{i}^{n}}\dot{K}_{1}^{n}+{C_{i}^{n}}\dot{K}_{2}^{n}\quad \text{for $i=1,2$,} $$

where \({A_{i}^{n}}, {B_{i}^{n}}\) and \({C_{i}^{n}}\) are known. Similarly, from the other relations of (3.3), we get

$$ \dot{P}_{i}^{n}=\overline{A}_{i}^{n}+\overline{B}_{i}^{n}\dot{K}_{1}^{n} +\overline{C}_{i}^{n}\dot{K}_{2}^{n},\quad \dot{Q}_{i}^{n}=\widetilde{A}_{i}^{n}+\widetilde{B}_{i}^{n}\dot{K}_{1}^{n} +\widetilde{C}_{i}^{n}\dot{K}_{2}^{n}\quad \text{for} i=1,2. $$

Computing the discrete inner product of three relations mentioned above with \({X_{i}^{n}}, {Y_{i}^{n}}\) and \({Z_{i}^{n}}\), respectively, for i = 1, 2, one has

$$ \begin{array}{@{}rcl@{}} \left\{\begin{array}{lllll} 2\mathrm{I}_{i}^{n}&=\langle\dot{\Phi}_{i}^{n},{X_{i}^{n}}\rangle =\langle {A_{i}^{n}},{X_{i}^{n}}\rangle +\langle {B_{i}^{n}},{X_{i}^{n}}\rangle (\mathrm{I}_{1}^{n}+\text{II}_{1}^{n}+\text{III}_{1}^{n}) +\langle {C_{i}^{n}},{X_{i}^{n}}\rangle (\mathrm{I}_{2}^{n}+\text{II}_{2}^{n}+\text{III}_{2}^{n}),\\ \text{II}_{i}^{n}&=\langle\dot{P}_{i}^{n},{Y_{i}^{n}}\rangle =\langle \overline{A}_{i}^{n},{Y_{i}^{n}}\rangle +\langle \overline{B}_{i}^{n},{Y_{i}^{n}}\rangle (\mathrm{I}_{1}^{n}+\text{II}_{1}^{n}+\text{III}_{1}^{n}) +\langle \overline{C}_{i}^{n},{Y_{i}^{n}}\rangle (\mathrm{I}_{2}^{n}+\text{II}_{2}^{n}+\text{III}_{2}^{n}),\\ \text{III}_{i}^{n}&=\langle\dot{Q}_{i}^{n},{Z_{i}^{n}}\rangle =\langle \widetilde{A}_{i}^{n},{Z_{i}^{n}}\rangle +\langle \widetilde{B}_{i}^{n},{Z_{i}^{n}}\rangle (\mathrm{I}_{1}^{n}+\text{II}_{1}^{n}+\text{III}_{1}^{n}) +\langle \widetilde{C}_{i}^{n},{Z_{i}^{n}}\rangle (\mathrm{I}_{2}^{n}+\text{II}_{2}^{n}+\text{III}_{2}^{n}). \end{array}\right. \end{array} $$

We solve the linear algebraic equations and obtain the values of \(\mathrm {I}_{i}^{n}, \text {II}_{i}^{n}\) and \(\text {III}_{i}^{n}\ (i=1,2)\). These results lead to the values of \(\dot {K}_{i}^{n}\) and \(\dot {P}_{i}^{n}, \dot {Q}_{i}^{n}, \dot {\Phi }_{i}^{n}\) sequentially. In terms of the iterative errors of \({P_{i}^{n}}, {Q_{i}^{n}}\) and \({{\Phi }_{i}^{n}}\), one could determine the values of \(\dot {\Upsilon }_{i}^{n}\ ({\Upsilon }=P, Q, {\Phi }, W, K)\) and finally get the numerical solutions at the next time level from (3.4) and update the iterative values.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, L. High-order conservative energy quadratization schemes for the Klein-Gordon-Schrödinger equation. Adv Comput Math 48, 41 (2022). https://doi.org/10.1007/s10444-022-09962-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09962-2

Keywords

Mathematics Subject Classification (2010)