Skip to main content
Log in

Convergence of consistent and inconsistent schemes for fractional diffusion problems with boundaries

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

An implicit numerical method for a fractional diffusion problem in the presence of an absorbing boundary is analyzed. The discretization chosen for the spatial fractional differential operator is known to be second-order accurate, when the problem is defined in the real line. The main purpose of this work is to show how the presence of the boundary can change the properties of the scheme, namely its consistency and convergence. We establish that the order of accuracy of the spatial truncation error can be lower than two in the presence of the boundary and in some cases we have inconsistency, depending not necessarily on the regularity of the solution but on the values of its derivatives at the boundary. Furthermore, we prove the rate of convergence will be higher than the order of accuracy given by the consistency analysis and sometimes we can recover the order two. In particular, the convergence is achieved for some of the inconsistent cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References 

  1. Araújo, H. A., Lukin, M.O., da Luz, M.G.E., Viswanathan, G.M., Santos, F.A.N., Raposo, E.P.: Revisiting Lévy flights on bounded domains: a Fock space approach. J. Stat. Mech P083202 (2020). https://iopscience.iop.org/article/10.1088/1742-5468/aba593

  2. Baeumer, B., Kovács, M., Meerschaert, M.M., Sankaranarayanan, H.: Boundary conditions for fractional diffusion. J. Comput. Appl. Math. 336, 408–424 (2018)

    Article  MathSciNet  Google Scholar 

  3. Buldyrev, S.V., Havlin, S., Kazakov, A., Ya Da Luz, M.G.E., Raposo, E.P., Stanley, H.E., Viswanathan, G.M.: Average time spent by Lévy flights and walks on an interval with absorbing boundaries. Phys. Rev. 64, 041108 (2001)

    MATH  Google Scholar 

  4. Chechkin, A.V., Metzler, R., Gonchar, V.Y., Klafter, J., Tanatarov, L.V.: First passage and arrival time densities for Lévy flights and the failure of the method of images. J. Phys. A. 36, L537 (2003)

    Article  Google Scholar 

  5. Defterli, O., D’Elia, M., Du, Q., Gunzburger, M., Lehoucq, R., Meerschaert, M.M.: Fractional diffusion in bounded domains. Frac. Calc. Appl. Anal. 18, 342–360 (2015)

    Article  Google Scholar 

  6. D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66, 1245–1260 (2013)

    Article  MathSciNet  Google Scholar 

  7. Dubkov, A.A., Cognata, A., La spagnolo, B.: The problem of analytical calculation of barrier crossing characteristics for Lévy flights. J. Stat. Mech. P01002 (2009). https://iopscience.iop.org/article/10.1088/1742-5468/2009/01/P01002

  8. Donatelli, M., Krause, R., Mazza, M., Trotti, K.: Multigrid preconditioners for anisotropic space-fractional diffusion equations. Adv. Comput. Math. 46, 49 (2020)

    Article  MathSciNet  Google Scholar 

  9. Dybiec, B., Gudowska-Nowak, E., Hanggi, P.: Lévy-brownian motion on finite intervals: Mean first passage time analysis. Phys. Rev. E 73, 046104 (2006)

    Article  Google Scholar 

  10. Dybiec, B., Gudowska-Nowak, E., Barkai, E., Dubkov, A.A.: Lévy flights versus Lévy walks in bounded domains. Phys. Rev. E 95, 052102 (2017)

    Article  MathSciNet  Google Scholar 

  11. Hao, Z., Zang, H.: Optimal regularity and error estimates of a spectral Galerkin method for fractional advection-diffusion-reaction equations. SIAM J. Numer. Anal. 58, 211–233 (2020)

    Article  MathSciNet  Google Scholar 

  12. Huang, Y., Oberman, A.: Numerical methods for the fractional Laplacian: A finite difference-quadrature approach. SIAM J. Numer. Anal. 52, 3056–3084 (2014)

    Article  MathSciNet  Google Scholar 

  13. Kelly, J.F., Sankaranarayanan, H., Meerschaert, M.M.: Boundary conditions for two-sided fractional diffusion. J. Comput. Phys. 376, 1089–1107 (2019)

    Article  MathSciNet  Google Scholar 

  14. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  15. Li, C., Deng, W.: High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42, 543–572 (2016)

    Article  MathSciNet  Google Scholar 

  16. Liu, H., Zheng, X., Wang, H., Fu, H.: Error estimate of finite element approximation for two-sided space-fractional evolution equation with variable coefficient. J. Sci. Comput. 90, 15 (2022)

    Article  MathSciNet  Google Scholar 

  17. Lischke, A., Kelly, J.F., Meerschaert, M.M.: Mass-conserving tempered fractional diffusion in a bounded interval. Frac. Calc. Appl. Anal. 22, 1561–1595 (2019)

    Article  MathSciNet  Google Scholar 

  18. Metzler, R., Klafter, J.: Boundary value problems for fractional diffusion equations. Phys. A: Stat. Mech. Appl. 278, 107–125 (2000)

    Article  MathSciNet  Google Scholar 

  19. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)

    Article  MathSciNet  Google Scholar 

  20. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993)

    MATH  Google Scholar 

  21. Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative. Appl. Numer. Math. 90, 22–37 (2015)

    Article  MathSciNet  Google Scholar 

  22. Sousa, E.: Consistency analysis of the grünwald-letnikov approximation in a bounded domain. IMA J. Numer. Anal. 42, 2771–2793 (2022)

    Article  MathSciNet  Google Scholar 

  23. van Milligen, B. P. h., Calvo, I., Sanchez, R.: Continuous random walks in finite domains and general boundary conditions: some formal considerations. J. Phys. A: Math. Theor. 41, 215004 (2008)

    Article  MathSciNet  Google Scholar 

  24. Wardak, A.: First passage leapovers of Lévy flights and the proper formulation of absorbing boundary conditions. J. Phys. A: Math. Theor. 53, 375001 (2020)

    Article  MathSciNet  Google Scholar 

  25. Wang, H., Yang, D.: Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51, 1088–1107 (2013)

    Article  MathSciNet  Google Scholar 

  26. Zhang, Q., Hesthaven, J.S., Sun, Z.-Z., Ren, Y.: Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg-Landau equation. Adv. Comput. Math. 47, 35 (2021)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Y., Yu, X., Li, X., Kelly, J.F., Sun, H., Zhen, C.: Impact of absorbing and reflective boundaries on fractional derivative models: quantification, evaluation and application. Adv. Water Resour. 128, 129–144 (2019)

    Article  Google Scholar 

  28. Zheng, X., Ervin, V.J., Wang, H.: Optimal Petrov-Galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval. J. Sci. Comput. 86, 1–22 (2021)

    Article  MathSciNet  Google Scholar 

  29. Zoia, A., Rosso, A., Kardar, M.: Fractional Laplacian in bounded domains. Phys. Rev. E 76, 021116 (2007)

    Article  MathSciNet  Google Scholar 

  30. Zumofen, G., Klafter, J.: Absorbing boundary in one-dimensional anomalous transport. Phys. Rev. E 51, 2805 (1995)

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the Centre for Mathematics of the University of Coimbra – UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercília Sousa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Bangti Jin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, E. Convergence of consistent and inconsistent schemes for fractional diffusion problems with boundaries. Adv Comput Math 48, 68 (2022). https://doi.org/10.1007/s10444-022-09984-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09984-w

Keywords

Mathematics Subject Classification (2010)