Skip to main content
Log in

Unified construction and L2 analysis for the finite volume element method over tensorial meshes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We provide a unified construction for high order finite volume element (FVE) schemes with the optimal L2 convergence rate over tensorial meshes in any d-dimension (d ≥ 2). Under this framework, one can choose the k dual parameters for each direction on a (k − 1)-dimensional surface in the k-dimensional parameter space, which provides us more choices than the existing Gaussian point-based dual strategy. This opens up more possibilities for applying the FVE method to some complex problems (see Example 3 for a convection-dominated problem as an example). Theoretically, we present the L2 estimate of the FVE method with general dual meshes in arbitrary d-dimension. The tensorial orthogonal condition (TOC) is proposed and proved to be a sufficient condition for a tensorial FVE scheme to maintain the optimal L2 convergence rate. Numerical experiments illustrate the above results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24(4), 777–787 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai, Z., Mandel, J., McCormick, S.: The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28(2), 392–402 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, W., Zhang, Z., Zou, Q.: Superconvergence of any order finite volume schemes for 1D general elliptic equations. J. Sci. Comput. 56 (3), 566–590 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, W., Zhang, Z., Zou, Q.: Is 2k-conjecture valid for finite volume methods?. SIAM J. Numer. Anal. 53(2), 942–962 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47(6), 4021–4043 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z., Li, R., Zhou, A.: A note on the optimal L2-estimate of the finite volume element method. Adv. Comput. Math. 16(4), 291–303 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Z., Wu, J., Xu, Y.: Higher-order finite volume methods for elliptic boundary value problems. Adv. Comput. Math. 37(2), 191–253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z., Xu, Y., Zhang, Y.: A construction of higher-order finite volume methods. Math. Comput. 84(292), 599–628 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chou, S.-H., Ye, X.: Unified analysis of finite volume methods for second order elliptic problems. SIAM J. Numer. Anal. 45(4), 1639–1653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P.G.: The finite element method for elliptic problems, volume 4 of studies in mathematics and its applications. North-Holland Pub. Co. and New York, Sole distributors for the U.S.A. and Canada, Amsterdam and New York (1978)

  11. Cui, M., Ye, X.: Unified analysis of finite volume methods for the Stokes equations. SIAM J. Numer. Anal. 48(3), 824–839 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, Y., Liang, D., Li, Y.: Optimal weighted upwind finite volume method for convection-diffusion equations in 2D. J. Comput. Appl. Math. 359, 73–87 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hackbusch, W.: On first and second order box schemes. Computing 41(4), 277–296 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, J., Xi, S.: On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal. 35(5), 1762–1774 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, J., Chen, Z., He, Y.: A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D navier–Stokes equations. Numer. Math. 122(2), 279–304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, R., Chen, Z., Wu, W.: Generalized difference methods for differential equations. Marcel Dekker, New York (2000)

    Book  Google Scholar 

  18. Li, Y., Li, R.: Generalized difference methods on arbitrary quadrilateral networks. J. Comput. Math. 17(6), 653–672 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Liebau, F.: The finite volume element method with quadratic basis functions. Computing 57(4), 281–299 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, Y., Yang, M., Zou, Q.: L2 error estimates for a class of any order finite volume schemes over quadrilateral meshes. SIAM J. Numer. Anal. 53(4), 2030–2050 (2015)

    Article  MATH  Google Scholar 

  21. Lv, J., Li, Y.: L2 Error estimates and superconvergence of the finite volume element methods on quadrilateral meshes. Adv. Comput. Math. 37(3), 393–416 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lv, J., Li, Y.: Optimal biquadratic finite volume element methods on quadrilateral meshes. SIAM J. Numer. Anal. 50(5), 2379–2399 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nie, C., Shu, S., Yu, H., Xia, W.: Superconvergence and asymptotic expansions for bilinear finite volume element approximation on non-uniform grids. J. Comput. Appl. Math. 321, 323–335 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Plexousakis, M., Zouraris, G.E.: On the construction and analysis of high order locally conservative finite volume-type methods for one-dimensional elliptic problems. SIAM J. Numer. Anal. 42(3), 1226–1260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schmidt, T.: Box schemes on quadrilateral meshes. Computing 51(3-4), 271–292 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shi, Z.: A convergence condition for the quadrilateral Wilson element. Numer. Math. 44(3), 349–361 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Süli, E.: Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes. SIAM J. Numer. Anal. 28(5), 1419–1430 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Süli, E.: The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. Comput. 59(200), 359 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Q., Zhang, Z., Zhang, X., Zhu, Q.: Energy-preserving finite volume element method for the improved Boussinesq equation. J. Comput. Phys. 270, 58–69 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, X., Huang, W., Li, Y.: Conditioning of the finite volume element method for diffusion problems with general simplicial meshes. Math. Comput. 88(320), 2665–2696 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, X., Li, Y.: L2 error estimates for high order finite volume methods on triangular meshes . SIAM J. Numer. Anal. 54(5), 2729–2749 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, X., Lv, J., Li, Y.: New superconvergent structures developed from the finite volume element method in 1D. Math. Comput. 90(329), 1179–1205 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, X., Zhang, Y.: On the construction and analysis of finite volume element schemes with optimal L2 convergence rate. Numerical Mathematics: Theory Methods and Applications 14(1), 47–70 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Xu, J., Zou, Q.: Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer. Math. 111(3), 469–492 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, M.: L2 Error estimation of a quadratic finite volume element method for pseudo-parabolic equations in three spatial dimensions. Appl. Math. Comput. 218(13), 7270–7278 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Yang, M., Liu, J., Lin, Y.: Quadratic finite-volume methods for elliptic and parabolic problems on quadrilateral meshes: optimal-order errors based on Barlow points. IMA J. Numer. Anal. 33(4), 1342–1364 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Y., Wang, X.: Stability and H1 estimate for finite volume element methods over general tensorial meshes. Preprint (2022)

  38. Zhang, Z., Zou, Q.: Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems. Numer. Math. 130(2), 363–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their suggestions and comments which are very helpful in improving the quality and readability of this paper.

Funding

This work is supported in part by the National Natural Science Foundation of China (11701211, 12071177) and the China Postdoctoral Science Foundation (2021M690437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Statements

This manuscript has not been published before. It is not under consideration for publication anywhere else, and its publication has been approved by all co-authors, if any, as well as by the responsible authorities — tacitly or explicitly — at the institute where the work has been carried out. The publisher will not be held legally responsible should there be any claims for compensation.

Additional information

Communicated by: Long Chen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, X. Unified construction and L2 analysis for the finite volume element method over tensorial meshes. Adv Comput Math 49, 2 (2023). https://doi.org/10.1007/s10444-022-10004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-10004-0

Keywords

Mathematics Subject Classification (2010)

Navigation