Skip to main content
Log in

An extrapolated Crank-Nicolson virtual element scheme for the nematic liquid crystal flows

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the numerical approximations of the Ericksen-Leslie system for nematic liquid crystal flows, which can be used to describe the dynamics of low molar-mass nematic liquid crystal in certain materials. The main numerical challenge to solve this system lies in how to discretize nonlinear terms so that the energy stability can be held at the discrete level. This paper address this numerical problem by constructing a fully discrete virtual element scheme with second-order temporal accuracy, which is achieved by combining the extrapolated Crank-Nicolson (C-N) time-stepping scheme for the nonlinear coupling terms and the convex splitting method for the Ginzburg-Landau term. The unconditional energy stability and unique solvability of the fully discrete scheme are rigorously proved, we further prove the optimal error estimates of the developed scheme. Finally, some numerical experiments are presented to demonstrate the accuracy, energy stability, and performance of the proposed numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adak, D., Natarajan, E., Kumar, S.: Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 35, 222–245 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akbas, M., Kaya, S., Rebholz, L.: On the stability at all times of linearly extrapolated BDF2 timestepping for multiphysics incompressible flow problems. Numer. Methods Partial Differ. Equ. 33, 999–1017 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Becker, R., Feng, X., Prohl, A.: Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal. 46, 1704–1731 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Basic principles of virtual element methods: Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    MathSciNet  Google Scholar 

  7. Beirão da Veiga, L.., Brezzi, F.., Marini, L..D..: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51, 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga, L.., Brezzi, F.., Marini, L..D.., Russo, A..: The Hitchhiker guide to the virtual element method. Math. Models Methods Appl. Sci. 24, 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beirão da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346, (2015)

  10. Beirão da Veiga, L., Brezzi, F., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26, 729–750, (2016)

  11. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27, 2557–2594 (2017)

  12. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM:M2AN 51, 509–535, (2017)

  13. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56, 1210–1242, (2018)

  14. Beirão da Veiga, L., Russo, A., Vacca, G.: The virtual element method with curved edges. ESAIM:M2AN, 53, 375–404, (2019)

  15. Brezis, H.: The interplay between analysis and topology in some nonlinear PDE problems. Bull. Am. Math. Soc. 40, 179–202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54, 3411–3435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 27, 1317–1354 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Erickson, J.L.: Continuum theory of nematic liquid crystals. Res. Mechanica 21, 381–392 (1987)

    Google Scholar 

  19. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gatica, G.N., Munar, M., Sequeira, F.A.: A mixed virtual element method for the Navier-Stokes equations. Math. Models Methods Appl. Sci. 28, 2719–2762 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guillén-González, F.M., Gutiérrez-Santacreu, J.V.: A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model. ESAIM:M2AN, 47, 1433–1464, (2013)

  22. Hecht, F., Pironneau, O., Ohtsuka, K.: FreeFEM++, http://www.freefem.org/

  23. Leslie, F.M.: Some constitutive equations for anisotropic fluids. Q. J. Mech. Appl. Math. 19, 357–370 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  24. Leslie, F.M.: Theory of flow phenomena in liquid crystals. Advances in Liquid Crystals, Academic Press, New York 4, 1–81 (1979)

    Article  Google Scholar 

  25. Li, M., Zhao, J., Wang, N., Chen, S.: Conforming and nonconforming conservative virtual element methods for nonlinear Schrödinger equation: A unified framework. Comput. Methods Appl. Mech. Eng. 380, 113793 (2021)

    Article  MATH  Google Scholar 

  26. Lin, F.: Nonlinear theory of defects in nematic liquid crystals phase transition and flow phenomena. Commun. Pure Appl. Math. 42, 789–814 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin, F., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin, F., Liu, C.: Existence of solutions for the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 154, 135–156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lin, P., Liu, C.: Simulations of singularity dynamics in liquid crystal flows: A \(C^0\) finite element approach. J. Comput. Phys. 37, 348–362 (2006)

    Article  MATH  Google Scholar 

  30. Liu, C., Walkington, N.J.: Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37, 725–741 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, C., Walkington, N.J.: Mixed methods for the approximation of liquid crystal flows. ESAIM:M2AN 37, 205–222, (2002)

  32. Liu, C., Shen, J., Yang, X.: Dynamics of defect motion in nematic liquid crystal flow: modeling and numerical simulation. Commun. Comput. Phys. 2, 1184–1198 (2007)

    MATH  Google Scholar 

  33. Liu, X., Li, J., Chen, Z.: A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech. Eng. 320, 694–711 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, X., Chen, Z.:s The nonconforming virtual element method for the Navier-Stokes equations. Adv. Comput. Math. 45, 51–74, (2019)

  35. Liu, X., He, Z., Chen, Z.: A fully discrete virtual element scheme for the Cahn-Hilliard equation in mixed form. Comput. Phys. Commun. 246, 106870 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, X., Nie, Y.: A modified nonconforming virtual element with BDM-like reconstruction for the Navier-Stokes equations. Appl. Numer. Math. 167, 375–388 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rey, A.D., Denn, M.M.: Dynamical phenomena in liquid-crystalline materials. Annu. Rev. Fluid Mech. 34, 233–266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, (2008)

  39. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tang, Y., Zou, G., Li, J.: Unconditionally energy-stable finite element scheme for the chemotaxis-fluid system. J. Sci. Comput. 95, 1, (2023) https://doi.org/10.1007/s10915-023-02118-4

  41. Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31, 2110–2134, (2015)

  42. Wang, C., Wang, J., Xia, Z., Xu, L.: Optimal error estimates of a Crank-Nicolson finite element projection method for magnetohydrodynamic equations. ESAIM:M2AN, 56, 767–789, (2022)

  43. Yang, X., Forest, M.G., Liu, C., Shen, J.: Shear cell rupture of nematic liquid crystal droplets in viscous fluids. J. Non-Newtonian Fluid Mech. 166, 487–499 (2011)

    Article  MATH  Google Scholar 

  44. Zhang, X., Feng, M.: A projection-based stabilized virtual element method for the unsteady incompressible Brinkman equations. Appl. Math. Comput. 408, 126325 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Zhao, J., Yang, X., Li, J., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. 38, A3264–A3290 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhao, J., Wang, Q.: Semi-discrete energy-stable schemes for a tensor-based hydrodynamic model of nematic liquid crystal flows. J. Sci. Comput. 68, 1241–1266 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zou, G., Wang, B., Yang, X.: A fully-decoupled discontinuous Galerkin approximation of the Cahn-Hilliard-Brinkman-Ohta-Kawasaki tumor growth model. ESAIM:M2AN 56, 2141–2180, (2022)

  49. Zou, G., Li, Z., Yang, X.: Fully discrete discontinuous Galerkin numerical scheme with second-order temporal accuracy for the hydrodynamically coupled lipid vesicle model. J. Sci. Comput. 95, 5 (2023). https://doi.org/10.1007/s10915-023-02129-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for carefully reading this paper and for their comments and suggestions which have improved the paper.

Funding

Guang-an Zou is supported by China Postdoctoral Science Foundation (No. 2019M662476), and the Key Scientific Research Projects of Colleges and Universities in Henan Province, China (23A110006). Jian Li is supported by NSF of China (No. 11771259), Shaanxi Provincial Joint Laboratory of Artificial Intelligence (No. 2022JC-SYS-05), Innovative team project of Shaanxi Provincial Department of Education (No. 21JP013) and 2022 Shaanxi Provincial Social Science Fund Annual Project (No. 2022D332).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-an Zou or Jian Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Long Chen

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Ga., Wang, X. & Li, J. An extrapolated Crank-Nicolson virtual element scheme for the nematic liquid crystal flows. Adv Comput Math 49, 30 (2023). https://doi.org/10.1007/s10444-023-10028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10028-0

Keywords

Mathematics Subject Classification (2010)

Navigation