Abstract
Recently, a so-called direct method has been developed for solving 2D Maxwell’s equations in Kerr-type nonlinear media. This method is free of iteration error and more efficient than classical iterative method. We investigate this method from a theoretical point of view by proving the stability of 3D Maxwell’s equations. Numerical results have been achieved to verify the second-order convergence rate in both time and space.
Similar content being viewed by others
References
Gao, L., Zhang, B.: Optimal error estimates and modified energy conservation identities of the ADI-FDTD scheme on staggered grids for 3D Maxwell’s equations. Sci. China Math. 56(8), 1705–1726 (2013)
Fathy, A., Wang, C., Wilson, J., Yang, S.: A fourth order difference scheme for the Maxwell equations on Yee grid. J. Hyperbolic Differ. Equ. 5(3), 613–642 (2008)
Li, J., Shields, S.: Superconvergence analysis of Yee scheme for metamaterial Maxwell’s equations on non-uniform rectangular meshes. Numer. Math. 134(4), 741–781 (2016)
Li, W., Liang, D., Lin, Y.: A new energy-conserved s-FDTD scheme for Maxwell’s equations in metamaterials. Int. J. Numer. Anal. Model. 10, 775–794 (2013)
Monk, P., Süli, E.: A convergence analysis of Yee’s scheme on nonuniform grids. SIAM J. Numer. Anal. 31(2), 393–412 (1994)
Zhang, Y., Nguyen, D.D., Du, K., Xu, J., Zhao, S.: Time-domain numerical solutions of Maxwell interface problems with discontinuous electromagnetic waves. Adv. Appl. Math. Mech. 8(3), 353–385 (2016)
Li, J., Chen, M., Chen, M.: Developing and analyzing fourth-order difference methods for the metamaterial Maxwell’s equations. Adv. Comput. Math. 45(3), 1–29 (2018)
Huang, Y., Chen, M., Li, J.: Developing and analyzing new unconditionally stable finite element schemes for Maxwell’s equations in Complex Media. J. Sci. Comput. 86(3), 1–33 (2021)
Cai, J., Wang, Y., Gong, Y.: Convergence of time-splitting energy-conserved symplectic schemes for 3D Maxwell’s equations. Appl. Math. Comput. 265, 51–67 (2015)
Li, J., Huang, Y.: Time-domain finite element methods for Maxwell’s equations in metamaterials. Springer, Berlin (2013)
Boffi, D., Fernandez, P., Perugia, I.: Computational models of electromagnetic resonators, analysis of edge element approximation. SIAM J. Numer. Anal. 36, 1264–1290 (1999)
Brenner, S.C., Cui, J., Nan, Z., Sung, L.Y.: Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell’s equations. Math. Compet. 81(278), 643–659 (2012)
Chung, E.T., Engquist, B.: Convergence analysis of fully discrete finite volume methods for Maxwell’s equations in nonhomogeneous media. SIAM J. Numer. Anal. 43(1), 303–317 (2005)
Hochbruck, M., Jahnke, T., Schnaubelt, R.: Convergence of an ADI splitting for Maxwell’s equations. Numer. Math. 129(3), 535–561 (2015)
Li, J.: Two new finite element schemes and their analysis for modeling of wave propagation in graphene. Results Appl. Math. 9, 100136 (2021)
Li, J., Hesthaven, J.S.: Analysis and application of the nodal discontinuous galerkin method for wave propagation in metamaterials. J. Comput. Phys. 258, 915–930 (2014)
Tsantili, I.C., Cho, M.H., Cai, W., Em Karniadakis, G.: A computational stochastic methodology for the design of random meta-materials under geometric constraints. SIAM J. Sci. Comput. 40(2), B353–B378 (2018)
Yang, Z., Wang, L.L., Rong, Z., Wang, B., Zhang, B.: Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics. Comput. Methods Appl. Mech. Eng. 301, 137–163 (2016)
Chen, M., Huang, Y., Li, J.: Development and analysis of an new finite element method for the Cohen-Monk PML model. Numer. Math. 147(1), 127–155 (2021)
Joseph, R.M., Taflove, A.: FDTD Maxwell’s equations models for nonlinear electrodynamics and optics. IEEE T. Antenn. Propag. 45(3), 364–374 (1997)
Boyd, R. W.: Nonliner Optics, Academic Press, 2003
Tran, P.: Photonic-band-structure calculation of material possessing Kerr nonlinearity. Phys. Rev. B, Condens. Matter, 52(15), 10673–10676 (1995)
Maksymov, Ivan S., Andrey A. Sukhorukov, Andrei V. Lavrinenko, and Yuri S. Kivshar.: Comparative study of FDTD-adopted numerical algorithms for Kerr nonlinearities. IEEE Antennas Wireless Propag. Lett., 10, 143–146 (2011)
Joseph, R.M., Taflove, A.: Spatial soliton deflection mechanism indicated by FDTD Maxwell’s equations modeling. IEEE Photonic. Tech. L. 6(10), 1251–1254 (1994)
Ziolkowski, R.W., Judkins, J.B.: Full-wave vector Maxwell’s equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time. J. Opt. Soc. Am. B. 10(2), 186–198 (1993)
Fisher, A., White, D., Rodrigue, G.: An efficient vector finite element method for nonlinear electromagnetic modeling. J. Comput. Phys. 225, 1331–1346 (2007)
Huang, J., Shu, C.W.: A second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr-Debye model. Math. Math. Mod. Meth. Appl. S. 27, 549–580 (2017)
Bokil, V.A., Cheng, Y., Jiang, Y., Li, F.: Energy stable discontinuous Galerkin methods for Maxwell’s equations in nonlinear optical media. J. Comput. Phys. 350, 420–452 (2017)
Nagaraj, S., Grosek, J., Petrides, S., Demkowicz, L.F., Mora, J.: A 3D DPG Maxwell approach to nonlinear Raman gain in fiber laser amplifiers. J. Comput. Phys. X 2(22), 100002 (2019)
Aregba-Driollet, D.: Godunov scheme for Maxwell’s equations with Kerr nonlinearity. Commun. Math. Sci. 13, 2195–2222 (2015)
Jia, H., Li, J., Fang, Z., Li, M.: A new FDTD scheme for Maxwell’s equations in Kerr-type nonlinear media. Numer. Algorithms 82, 223–243 (2019)
Huang, Y., Li, J., He, B.: A time-domain finite element scheme and its analysis for nonlinear Maxwell’s equations in Kerr media. J. Comput. Phys. 435(11), 110259 (2021)
Fujii, M., Russer, P.: A nonlinear and dispersive APML ABC for the FD-TD methods. IEEE Microwave Wireless Compon. Lett. 12(11), 444–446 (2002)
Jacquotte, O.P., Oden, J.T.: Analysis of hourglass instabilities and control in underintegrated finite element methods. Computer methods in applied mechanics and engineering 44(3), 339–363 (1984)
Suhas V. P.: Numerical heat transfer and fluid flow. CRC press, 2018
Julius, R.: A family of energy stable, skew-symmetric finite difference schemes on collocated grids. Journal of Scientific Computing 65(2), 821–838 (2015)
Goorjian, P.M., Taflove, A., Joseph, R.M., Hagness, S.C.: Computational modeling of femtosecond optical solitons from maxwell’s equations. IEEE J. Quantum electron. 28(10), 2416–2422 (1992)
de La Bourdonnaye, Armel: High-order scheme for a nonlinear maxwell system modelling kerr effect. J. Comput. Phys. 160(2), 500–521 (2000)
Fujii, M., Tahara, M., Sakagami, I., Freude, W., Russer, p.:High-order fdtd and auxiliary differential equation formulation of optical pulse propagation in 2-d kerr and raman nonlinear dispersive media. IEEE J. Quantum Electron., 40(2), 175–182, (2004)
Anees, A., Angermann, L.: Energy-stable time-domain finite element methods for the 3D nonlinear maxwell’s equations. IEEE Photonics J. 12(2), 1–15 (2020)
Lyu, M., Bokil, V.A., Cheng, Y., Li, F.: Energy stable nodal discontinuous galerkin methods for nonlinear maxwell’s equations in multi-dimensions. J. Sci. Comput. 89(2), 1–42 (2021)
Baruch, G., Fibich, G., Tsynkov, S.: High-order numerical method for the nonlinear helmholtz equation with material discontinuities in one space dimension. J. Comput. Phys. 227(1), 820–850 (2007)
Baruch, G., Fibich, G., Tsynkov, S.: A high-order numerical method for the nonlinear helmholtz equation in multidimensional layered media. J. Comput. Phys. 228(10), 3789–3815 (2009)
Xu, Z., Bao, G.: A numerical scheme for nonlinear helmholtz equations with strong nonlinear optical effects. JOSA A 27(11), 2347–2353 (2010)
Liu, J., Cornelius, J., Brio, M.: Fdtd method with explicit non-iterative and second order treatment for kerr nonlinearities. IEEE J. Multiscale Multiphysics Comput. Tech., (2022)
Acknowledgements
We are very grateful to two anonymous referees for their insightful comments on improving the paper.
Funding
This work was supported by the National Natural Science Foundation of China (Nos. 11961036, 12201263), the Natural Science Foundation of Jiangxi Province (No. 20161ACB20006), and Science Fund for Distinguished Young Scholars of Jiangxi Province (No. 20224ACB218001).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare no competing interests.
Additional information
Communicated by Ilaria Perugia.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, M., Gao, R., He, Y. et al. Numerical analysis of the direct method for 3D Maxwell’s equation in Kerr-type nonlinear media. Adv Comput Math 49, 34 (2023). https://doi.org/10.1007/s10444-023-10029-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-023-10029-z