Skip to main content
Log in

An efficient approximation to the stochastic Allen-Cahn equation with random diffusion coefficient field and multiplicative noise

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper studies the stochastic Allen-Cahn equation involving random diffusion coefficient field and multiplicative force noise. A new time-stepping method based on auxiliary variable approach is proposed and analyzed. The proposed method is efficient thanks to its low computational complexity. Furthermore, it is unconditionally stable in the sense that a discrete energy is dissipative when the multiplicative noise is absent. Our numerical experiments show that the new scheme is much more robust than the classical semi-implicit Euler-Maruyama scheme, particularly when the interface width parameter is small. Several numerical examples are provided to demonstrate the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27(6), 1085–1095 (1979)

    Google Scholar 

  2. Andersson, A., Larsson, S.: Weak convergence for a spatial approximation of the nonlinear stochastic heat equation. Math. Comput 85(299), 1335–1358 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 45(3), 1005–1034 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM SIAM J Numer Anal 42(2), 800–825 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Becker, S., Gess, B., Jentzen, A., Kloeden, P.E.: Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen-Cahn equations. Stoch. Partial Differ. Equ. Anal Comput 1–58 (2022)

  6. Becker, S., Jentzen, A.: Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg-Landau equations. Stoch Process Applic 129(1), 28–69 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Bou-Rabee, N., Vanden-Eijnden, E.: Continuous-time random walks for the numerical solution of stochastic differential equations. Am. Math. Soc. (2018)

  8. Bréhier, C.-E., Cui, J., Hong, J.: Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation. IMA J. Numer. Anal. 39(4), 2096–2134 (2019)

    MathSciNet  MATH  Google Scholar 

  9. C.-E. Bréhier and L. Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. (2018) arXiv:1801.06455

  10. Bréhier, C.-E., Goudenège, L.: Weak convergence rates of splitting schemes for the stochastic Allen-Cahn equation. BIT Numer. Math. 60(3), 543–582 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Cai, M., Gan, S., Wang, X.: Weak convergence rates for an explicit full-discretization of stochastic Allen-Cahn equation with additive noise. J. Sci. Comput. 86(3), 1–30 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Chopin, N.: Fast simulation of truncated Gaussian distributions. Stat Comput 21(2), 275–288 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Cui, J., Hong, J.: Strong and weak convergence rates of a spatial approximation for stochastic partial differential equation with one-sided Lipschitz coefficient. SIAM J. Num. Anal. 57(4), 1815–1841 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Cui, J., Hong, J., Liu, Z.: Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations. J. Differ. Equ. 263(7), 3687–3713 (2017)

    MATH  Google Scholar 

  15. Cui, J., Hong, J., Liu, Z., Zhou, W.: Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations. J. Differ. Equ. 266(9), 5625–5663 (2019)

    MATH  Google Scholar 

  16. Cui, J., Hong, J., Sun, L.: Semi-implicit energy-preserving numerical schemes for stochastic wave equation via SAV approach. (2022) arXiv:2208.13394

  17. Da Prato, G., Jentzen, A., Röckner : A mild itô formula for SPDEs. Trans Am Math Soc 372(6), 3755–3807 (2019)

  18. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. Cambridge University Press (2014)

  19. Dietrich, C.R.: A simple and efficient space domain implementation of the turning bands method. Water Resour. Res. 31(1), 147–156 (1995)

    Google Scholar 

  20. Dietrich, C.R., Newsam, G.N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci Comput 18(4), 1088–1107 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Engel, K., Nagel, R.: One-parameter semigroups for linear evolution equations. Semigr Forum 63, 278–280 (1999)

    Google Scholar 

  22. Feng, X., Li, Y., Zhang, Y.: Finite element methods for the stochastic Allen-Cahn equation with gradient-type multiplicative noise. SIAM J. Num Anal 55(1), 194–216 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Hilbert-schmidt operators. Classes of Linear Operators Vol. I, pp. 138–147. Springer, (1990)

  24. Hausenblas, E.: Approximation for semilinear stochastic evolution equations. Potential Anal 18(2), 141–186 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Hutzenthaler, M., Jentzen, A.: Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients, vol. 236. American Mathematical Society, (2015)

  26. Hutzenthaler, M., Jentzen, A.: On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with nonglobally monotone coefficients. Ann. Prob. 48(1), 53–93 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Jentzen, A., Pušnik, P.: Strong convergence rates for an explicit numerical approximation method for stochastic evolution equations with non-globally Lipschitz continuous nonlinearities. IMA J. Num. Anal. 40(2), 1005–1050 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous univariate distributions, volume 289. John Wiley & Sons, (1995)

  30. Kazashi, Y.: Quasi-Monte Carlo integration with product weights for elliptic PDEs with log-normal coeffcients. IMA J. Num. Anal. 39(3), 1563–1593 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Springer Science and Business Media, (2013)

  32. Kovács, M., Larsson, S., Lindgren, F.: On the backward Euler approximation of the stochastic Allen-Cahn equation. J Appl. Prob. 52(2), 323–338 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Kovács, M., Larsson, S., Lindgren, F.: On the discretisation in time of the stochastic Allen-Cahn equation. Math. Nachrichten 291(5–6), 966–995 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Kruse, R.: Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise. IMA J. Numer. Anal. 34(1), 217–251 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Kruse, R.: Strong and weak approximation of semilinear stochastic evolution equations. Springer, (2014)

  36. Li, C., Huang, Y., Yi, N.: An unconditionally energy stable second order finite element method for solving the Allen-Cahn equation. J. Comput. Appl. Math. 353, 38–48 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Li, N., Meng, B., Feng, X., Gui, D.: The spectral collocation method for the stochastic Allen-Cahn equation via generalized polynomial chaos. Numer. Heat Transf. B: Fundam. 68(1), 11–29 (2015)

    Google Scholar 

  38. Li, Y., Lee, H.G., Jeong, D., Kim, J.: An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation. Comput. Math. Appl. 60(6), 1591–1606 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Liu, Z., Qiao, Z.: Strong approximation of monotone stochastic partial differential equations driven by white noise. IMA J. Num. Anal. 40(2), 1074–1093 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Liu, Z., Qiao, Z.: Strong approximation of monotone stochastic partial differential equations driven by multiplicative noise. Stoch. Partial Differ. Equ. Anal Comput 9(3), 559–602 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Lord, G.J., Powell, C.E., Shardlow, T.: An introduction to computational stochastic PDEs. Cambridge University Press, (2014)

  42. Majee, A.K., Prohl, A.: Optimal strong rates of convergence for a space-time discretization of the stochastic Allen-Cahn equation with multiplicative noise. Comput. Methods Appl. Math. 18(2), 297–311 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Mantoglou, A., Wilson, J.L.: The turning bands method for simulation of random fields using line generation by a spectral method. Water Resour Res 18(5), 1379–1394 (1982)

    Google Scholar 

  44. Milstein, G.N., Tretyakov, M.V.: Stochastic numerics for mathematical physics. Springer Science and Business Media, (2013)

  45. Qi, R., Wang, X.: Optimal error estimates of Galerkin finite element methods for stochastic Allen-Cahn equation with additive noise. J Sci. Comput. 80(2), 1171–1194 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Qi, X., Azaiez, M., Huang, C., Xu, C.: An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise. AIMS Math. 7(12), 20684–20710 (2022)

    MathSciNet  Google Scholar 

  47. Sauer, M., Stannat, W.: Lattice approximation for stochastic reaction diffusion equations with one-sided Lipschitz condition. Math. Comput. 84(292), 743–766 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Shinozuka, M.: Simulation of multivariate and multidimensional random processes. J. Acoust. Soc. Am. 49(1B), 357–368 (1971)

    Google Scholar 

  51. Shinozuka, M., Jan, C.-M.: Digital simulation of random processes and its applications. J. Sound Vib. 25(1), 111–128 (1972)

    Google Scholar 

  52. Wadsworth, J.L., Tawn, J.A.: Efficient inference for spatial extreme value processes associated to log-Gaussian random functions. Biometrika 101(1), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Wang, X.: Strong convergence rates of the linear implicit Euler method for the finite element discretization of SPDEs with additive noise. IMA J. Numer. Anal. 37(2), 965–984 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Wang, X.: An efficient explicit full discrete scheme for strong approximation of stochastic Allen–Cahn equation. (2018) arXiv:1802:09413

  55. Wang, X.: An efficient explicit full-discrete scheme for strong approximation of stochastic Allen-Cahn equation. Stoch. Process. Their Appl 130(10), 6271–6299 (2020)

    MathSciNet  MATH  Google Scholar 

  56. Wood, A.T.A., Chan, G.: Simulation of stationary Gaussian processes in \([0, 1]^d\). J. Comput. Graph. Stat. 3(4), 409–432 (1994)

    MathSciNet  Google Scholar 

  57. Yan, Y.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43(4), 1363–1384 (2005)

    MathSciNet  MATH  Google Scholar 

  58. Zhang, Z., Karniadakis, G.: Numerical methods for stochastic partial differential equations with white noise. Springer International Publishing, (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanju Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Aihui Zhou

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is partially supported by NSFC grant 11971408

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Zhang, Y. & Xu, C. An efficient approximation to the stochastic Allen-Cahn equation with random diffusion coefficient field and multiplicative noise. Adv Comput Math 49, 73 (2023). https://doi.org/10.1007/s10444-023-10072-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10072-w

Keywords

Mathematics Subject Classification (2010)

Navigation