Abstract
This paper studies the finite element method for solving the exterior Stokes problem in two dimensions. A nonlocal boundary condition is defined using a nonsingular-kernel Dirichlet-to-Dirichlet (DtD) mapping, which maps the Dirichlet data on an interior circle to the Dirichlet data on another circular artificial boundary based on the Poisson integral formula of the Stokes problem. The truncated problem is then solved using the MINI-element method and a simple DtD iteration strategy, resulting into a sequence of unique and geometrically (h- independent) convergent solutions. The quasi-optimal error estimate is proved for the iterative solution at the end of the iteration process. Numerical experiments are presented to demonstrate the accuracy and efficiency of the proposed method.
Similar content being viewed by others
Data Availability
Data will be made available on reasonable request.
References
Armentano, M.G., Stockdale, M.L.: Approximations by mini mixed finite element for the Stokes-Darcy coupled problem on curved domains. Int. J. Numer. Anal. Model. 18(2), 203–234 (2021)
Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21(4), 337–344 (1984). https://doi.org/10.1007/BF02576171
Askham, T., Rachh, M.: A boundary integral equation approach to computing eigenvalues of the Stokes operator. Adv. Comput. Math. 46(2), 20 (2020). https://doi.org/10.1007/s10444-020-09774-2
Babu\(\breve{s}\)ka, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973). https://doi.org/10.1007/BF01436561
Bai, W.: The quadrilateral ‘Mini’ finite element for the Stokes problem. Comput. Methods Appl. Mech. Engrg. 143(1–2), 41–47 (1997). https://doi.org/10.1016/S0045-7825(96)01146-2
Bao, W.Z.: Artificial boundary conditions for two-dimensional incompressible viscous flows around an obstacle. Comput. Methods Appl. Mech. Engrg. 147(3–4), 263–273 (1997). https://doi.org/10.1016/S0045-7825(97)00001-7
Bao, W.Z.: Artificial boundary conditions for incompressible Navier-Stokes equations: a well-posed result. Comput. Methods Appl. Mech. Engrg. 188(1–3), 595–611 (2000). https://doi.org/10.1016/S0045-7825(99)00285-6
Bao, W.Z.: Error bounds for the finite-element approximation of the exterior Stokes equations in two dimensions. IMA J. Numer. Anal. 23(1), 125–148 (2003). https://doi.org/10.1093/imanum/23.1.125
Batchelor, G.K.: An introduction to fluid dynamics, paperback Cambridge Mathematical Library. Cambridge University Press, Cambridge (1999)
Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, vol. 44. Springer (2013)
Brenner, S.C.: The mathematical theory of finite element methods. Springer (2008)
Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8, 129–151 (1974). https://doi.org/10.1051/m2an/197408R201291
Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods, vol. 15. Springer Science & Business Media (2012)
Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012). https://doi.org/10.1017/S0962492912000037
Costabel, M., Stephan, E.: A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106(2), 367–413 (1985). https://doi.org/10.1016/0022-247X(85)90118-0
Cuvelier, C., Segal, A., Van Steenhoven, A.A.: Finite element methods and Navier-Stokes equations, vol. 22. Springer Science & Business Media (1986)
Dautray, R., Lions, J.L.: Mathematical analysis and numerical methods for science and technology: volume 1 physical origins and classical methods. Springer Science & Business Media (2012)
Domínguez, V., Graham, I.G., Smyshlyaev, V.P.: A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer. Math. 106(3), 471–510 (2007). https://doi.org/10.1007/s00211-007-0071-4
Domínguez, V., Sayas, F.-J.: A BEM-FEM overlapping algorithm for the Stokes equation. Appl. Math. Comput. 182(1), 691–710 (2006). https://doi.org/10.1016/j.amc.2006.04.031
Engleder, S., Steinbach, O.: Stabilized boundary element methods for exterior Helmholtz problems. Numer. Math. 110(2), 145–160 (2008). https://doi.org/10.1007/s00211-008-0161-y
Feng, X.L., Lu, X.L., He, Y.N.: Difference finite element method for the 3D steady Navier-Stokes equations. SIAM J. Numer. Anal. 61(1), 167–193 (2023). https://doi.org/10.1137/21M1450872
Girault, V., Raviart, P.A.: Finite element approximation of the Navier-Stokes equations, vol. 749. Springer, Berlin (1979)
Halpern, L., Schatzman, M.: Artificial boundary conditions for incompressible viscous flows. SIAM J. Math. Anal. 20(2), 308–353 (1989). https://doi.org/10.1137/0520021
Han, H.D., Lu, J.F., Bao, W.Z.: A discrete artificial boundary condition for steady incompressible viscous flows in a no-slip channel using a fast iterative method. J. Comput. Phys. 114(2), 201–208 (1994). https://doi.org/10.1006/jcph.1994.1160
Han, H.D., Bao, W.Z.: An artificial boundary condition for two-dimensional incompressible viscous flows using the method of lines. Internat. J. Numer. Methods Fluids 22(6), 483–493 (1996)
Han, H.D., Wu, X.N.: Artificial boundary method. Springer, Heidelberg; Tsinghua University Press, Beijing (2013). https://doi.org/10.1007/978-3-642-35464-9
He, Y.N., Li, J.: A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations. Appl. Numer. Math. 58(10), 1503–1514 (2008). https://doi.org/10.1016/j.apnum.2007.08.005
Helsing, J., Karlsson, A., Rosén, A.: Comparison of integral equations for the Maxwell transmission problem with general permittivities. Adv. Comput. Math. 47(5), 76 (2021). https://doi.org/10.1007/s10444-021-09904-4
Hsiao, G.C., Wendland, W.L.: Boundary integral equations, vol. 164 of Applied Mathematical Sciences. Springer-Verlag, Berlin (2008). https://doi.org/10.1007/978-3-540-68545-6
Hsiao, G.C., Xu, L.: A system of boundary integral equations for the transmission problem in acoustics. Appl. Numer. Math. 61(9), 1017–1029 (2011). https://doi.org/10.1016/j.apnum.2011.05.003
Jerez-Hanckes, C., Pinto, J.: Spectral Galerkin method for solving Helmholtz boundary integral equations on smooth screens. IMA J. Numer. Anal. 42(4), 3571–3608 (2022). https://doi.org/10.1093/imanum/drab074
John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017). https://doi.org/10.1137/15M1047696
Kim, S., Karilla, S.J.: Microhydrodynamics: principles and selected applications. Courier Corporation (2013)
Kiriaki, K., Vassilios, S.: Integral equation methods in obstacle elastic scattering. Bull. Greek Math. Soc. 45, 57–69 (2001)
Koens, L., Lauga, E.: The boundary integral formulation of Stokes flows includes slender-body theory. J. Fluid Mech. 850, 12 (2018). https://doi.org/10.1017/jfm.2018.483
Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. Math, Appl (1969)
Li, J., He, Y.N., Xu, H.: A multi-level stabilized finite element method for the stationary Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 196(29–30), 2852–2862 (2007). https://doi.org/10.1016/j.cma.2006.12.007
Li, X., Rui, H.X.: A low-order divergence-free \(H(\rm div)\)-conforming finite element method for Stokes flows. IMA J. Numer. Anal. 42(4), 3711–3734 (2022). https://doi.org/10.1093/imanum/drab080
Lukyanov, A.V., Shikhmurzaev, Y.D., King, A.C.: A combined BIE-FE method for the Stokes equations. IMA J. Appl. Math. 73(1), 199–224 (2008). https://doi.org/10.1093/imamat/hxm046
Maremonti, P.: On the Stokes equations: the maximum modulus theorem. Math. Models Methods Appl. Sci. 10(7), 1047–1072 (2000). https://doi.org/10.1142/S0218202500000537
Márquez, A., Meddahi, S.: New implementation techniques for the exterior Stokes problem in the plane. J. Comput. Phys. 172(2), 685–703 (2001). https://doi.org/10.1006/jcph.2001.6848
Meddahi, S., Sayas, F.-J.: A fully discrete BEM-FEM for the exterior Stokes problem in the plane. SIAM J. Numer. Anal. 37(6), 2082–2102 (2000). https://doi.org/10.1137/S0036142998341027
Nikitin, N.: Finite-difference method for incompressible Navier-Stokes equations in arbitrary orthogonal curvilinear coordinates. J. Comput. Phys. 217(2), 759–781 (2006). https://doi.org/10.1016/j.jcp.2006.01.036
Peng, Z.: A novel multitrace boundary integral equation formulation for electromagnetic cavity scattering problems. IEEE. T. Antenn. Propag. 63(10), 4446–4457 (2015). https://doi.org/10.1109/TAP.2015.2458328
Pozrikidis, C.: Boundary integral and singularity methods for linearized viscous flow. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1992). https://doi.org/10.1017/CBO9780511624124
Pozrikidis, C.: Introduction to theoretical and computational fluid dynamics. The Clarendon Press, Oxford University Press, New York (1997)
Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Compt. 38(158), 437–445 (1982). https://doi.org/10.2307/2007280
Shao, M.R., Song, L.N., Li, P.W.: A generalized finite difference method for solving Stokes interface problems. Eng. Anal. Bound. Elem. 132, 50–64 (2021). https://doi.org/10.1016/j.enganabound.2021.07.002
Sun, T., Wang, J.L., Zheng, C.X.: Fast evaluation of artificial boundary conditions for advection diffusion equations. SIAM J. Numer. Anal. 58(6), 3530–3557 (2020). https://doi.org/10.1137/19M130145X
Sun, T., Zheng, C.X.: Efficient implementation of the exact artificial boundary condition for the exterior problem of the Stokes system in three dimensions. IMA J. Numer. Anal. 43(2), 1061–1088 (2023). https://doi.org/10.1093/imanum/drab106
Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55(3), 309–325 (1989). https://doi.org/10.1007/BF01390056
Wang, Y.S., Shi, F., You, Z.M., Zheng, H.B.: Coupled and decoupled stabilized finite element methods for the Stokes-Darcy-transport problem. J. Sci. Comput. 100(1), 7, 38 (2024). https://doi.org/10.1007/s10915-024-02534-0
Wendland, W.L., Zhu, J.: The boundary element method for three-dimensional Stokes flows exterior to an open surface. Math. Comput. Model. 15(6), 19–41 (1991). https://doi.org/10.1016/0895-7177(91)90021-X
Xu, L., Zhang, S., Hsiao, G.C.: Nonsingular kernel boundary integral and finite element coupling method. Appl. Numer. Math. 137, 80–90 (2019). https://doi.org/10.1016/j.apnum.2018.11.012
Yan, C., Cai, W., Zeng, X.: A highly scalable boundary integral equation and walk-on-spheres (BIE-WOS) method for the Laplace equation with Dirichlet data. Commun. Comput. Phys. 29(5), 1446–1468 (2021). https://doi.org/10.4208/cicp.oa-2020-0099
Yin, T., Hsiao, G.C., Xu, L.: Boundary integral equation methods for the two-dimensional fluid-solid interaction problem. SIAM J. Numer. Anal. 55(5), 2361–2393 (2017). https://doi.org/10.1137/16M1075673
Yin, T., Rathsfeld, A., Xu, L.: A BIE-based DtN-FEM for fluid-solid interaction problems. J. Comput. Math. 36(1), 47–69 (2018). https://doi.org/10.4208/jcm.1610-m2015-0480
Yu, D.H.: Canonical integral equations of stokes problem. J. Comput. Math. 62–73 (1986)
Zhu, J., Yuan, Z.: Boundary element analysis. Science Press, Beijing (2009)
Zieniuk, E., Szerszeń, K.: NURBS curves in direct definition of the shapes of the boundary for 2D Stokes flow problems in modified classical BIE. Appl. Numer. Math. 132, 111–126 (2018). https://doi.org/10.1016/j.apnum.2018.05.013
Acknowledgements
This work is partially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences through Grant No. XDB0640000 and NSFC through Grants No. 12271082, 62231016, 12171465 and 12288201.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Communicated by: Aihui Zhou
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, X., Li, M., Yin, T. et al. A nonsingular-kernel Dirichlet-to-Dirichlet mapping method for the exterior Stokes problem. Adv Comput Math 51, 2 (2025). https://doi.org/10.1007/s10444-024-10216-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-024-10216-6
Keywords
- Exterior Stokes problem
- Dirichlet-to-Dirichlet mapping
- Mixed finite elements
- Bubble function
- Error estimates