Abstract
This paper addresses distributed task allocation among teams of agents in a RoboCup Rescue scenario. We are primarily concerned with testing different mechanisms that formalize issues underlying implicit coordination among teams of agents. These mechanisms are developed, implemented, and evaluated using two algorithms: Swarm-GAP and LA-DCOP. The latter bases task allocation on a comparison between an agent’s capability to perform a task and the capability demanded by this task. Swarm-GAP is a probabilistic approach in which an agent selects a task using a model inspired by task allocation among social insects. Both algorithms were also compared to another one that allocates tasks in a greedy way. Departing from previous works that tackle task allocation in the rescue scenario only among fire brigades, here we consider the various actors in the RoboCup Rescue, a step forward in the direction of realizing the concept of extreme teams. Tasks are allocated to teams of agents without explicit negotiation and using only local information. Our results show that the performance of Swarm-GAP and LA-DCOP are similar and that they outperform a greedy strategy. Also, it is possible to see that using more sophisticated mechanisms for task selection does pay off in terms of score.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Boffo, F., Ferreira, P. R., Jr., & Bazzan, A. L. C. (2007, December). A comparison of algorithms for task allocation in robocup rescue. In M. Dastani & R. H. Bordini (Ed.), Proceedings of the 5th European workshop on multiagent systems, pp. 537–548.
Bonabeau E., Theraulaz G., Dorigo M. (1999) Swarm intelligence: From natural to artificial systems. Oxford University Press, New York, USA
Camazine S., Deneubourg J.D., Franks N.R., Sneyd J., Theraulaz G., Bonabeau E. (2003) Self-organization in biological systems. Princeton University Press, Princeton, N.J.
dos Santos, F., & Bazzan, A. L. C. (2009). Ant-based task allocation among teams. In Proceedings of the eighth international joint conference on autonomous agents and multiagent systems. To appear.
Faltings B., Yokoo M. (2005) Introduction: Special issue on distributed constraint satisfaction. Artificial Intelligence 161: 1–5
Farinelli, A., Iocchi, L., Nardi, D., & Ziparo, V. A. (2006, July). Assignment of dynamically perceived tasks by token passing in multirobot systems. Proceedings of the IEEE, 94(7), 1271–1288.
Ferreira, P. R., Jr., Boffo, F., & Bazzan, A. L. C. (2007, May). A swarm based approximated algorithm to the extended generalized assignment problem (E-GAP). In Proceedings of the sixth international joint conference on autonomous agents and multiagent systems (AAMAS), pp. 1231–1233.
Ferreira, P. R., Jr., Boffo, F., & Bazzan, A. L. C. (2008). Using swarm-GAP for distributed task allocation in complex scenarios. In N. Jamali, P. Scerri, & T. Sugawara, (Eds.), Massively multiagent systems, Number 5043 in lecture notes in artificial intelligence, pp. 107–121. Berlin:Springer.
Goldman C., Zilberstein S. (2004) Decentralized control of cooperative systems: Categorization and complexity analysis. Journal of Artificial Intelligence Research 22: 143–174
Ham M., Agha G. (2007) Market-based coordination strategies for large-scale multi-agent systems. System and Information Sciences Notes 2(1): 126–131
Hara, T., & Toriumu, F. (2008, July). Robocup rescue 2008 repository—SUNTORI team.
Kalra, N., & Martinoli, A. (2006). A comparative study of market-based and threshold-based task allocation. Technical report, EPFL, Lausanne, Switzerland.
Karmani, R., Latvala, T., & Agha, G. (2007, July). On scaling multi-agent task reallocation using market-based approach. In Proceedings of the first IEEE international conference on self-adaptive and self-organizing systems, pp. 173–182.
Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A., & Shimada, S. (1999, October). Robocup rescue: Search and rescue in large-scale disasters as adomain for autonomous agents research. In Proceedings of the IEEE international conference on systems, man, and cybernetics (SMC), Vol. 6, pp. 739–743, Tokyo, Japan.
Nair, R., Ito, T., Tambe, M., & Marsella, S. (2002). Task allocation in the rescue simulation domain: A short note. In A. Birk & S. Coradeschi (Ed.), RoboCup 2001: Robot Soccer World Cup V, Vol. 2377 of Lecture notes in computer science, pp. 751–754. Berlin: Springer-Verlag.
Nair, R., Tambe, M., Yokoo, M., Pynadath, D. V., & Marsella, S. (2003). Taming decentralized POMDPs: Towards efficient policy computation for multiagent settings. In Proceedings of the eighteenth international joint conference on artificial intelligence (IJCAI-03), pp. 705–711, Acapulco, Mexico, August 9–15. Morgan Kaufmann.
Paquet S., Bernier N., Chaib-draa B. (2004) Comparison of different coordination strategies for the RoboCup Rescue simulation. In: Orchard B., Yang C., Ali M. (eds) Proceedings of the seventeenth international conference on industrial & engineering applications of artificial intelligence & expert systems. Springer, Ottawa, Canada. Berlin, pp 987–996
Paquet S., Chaib-draa B. (2006) Learning the required number of agents for complex tasks. In: Nakashima H., Wellman M.P., Weiss G., Stone P. (eds) Proceedings of the fifth international joint conference on autonomous agents and multiagent systems. ACM Press, Hakodate, Japan. New York, pp 736–746
Scerri P., Farinelli A., Okamoto S., Tambe M. (2005) Allocating tasks in extreme teams. In: Dignum F., Dignum V., Koenig S., Kraus S., Singh M.P., Wooldridge M. (eds) Proceedings of the fourth international joint conference on autonomous agents and multiagent systems. ACM Press, New York, USA, pp 727–734
Shmoys, D.B., & Tardos, V. (1993). An approximation algorithm for the generalized assignment problem. Mathematical Programming, 62(3), 461–474.
Skinner, C., & Barley, M. (2006). Robocup rescue simulation competition: Status report. In A. Bredenfeld, A. Jacoff, I. Noda, & Y. Takahashi (Eds.), RoboCup 2005: Robot Soccer World Cup IX, Vol. 4020 of Lecture notes in computer science, pp. 632–639. Berlin: Springer-Verlag.
Theraulaz, G., Bonabeau, E., & Deneubourg, J. (1998). Response threshold reinforcement and division of labour in insect societies. In Royal society of London series B–Biological sciences, Vol. 265, pp. 327–332.
Yikun, T., Wang, Y., Zhong, S., Zhang, J., Wentong, L., & Baoping, H. (2008, July). Robocup rescue 2008 repository–ZJUBase team.
Zhang W., Wittenburg L. (2002) Distributed breakout revisited. In: Dechter R., Kearns M., Sutton R. (eds) Eighteenth national conference on artificial intelligence. American Association for Artificial Intelligence, Menlo Park, CA, USA, pp 352–357
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ferreira, P.R., dos Santos, F., Bazzan, A.L.C. et al. RoboCup Rescue as multiagent task allocation among teams: experiments with task interdependencies. Auton Agent Multi-Agent Syst 20, 421–443 (2010). https://doi.org/10.1007/s10458-009-9087-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10458-009-9087-8