
Auton Agent Multi-Agent Syst
DOI 10.1007/s10458-009-9101-1

Agent-based architectural framework enhancing
configurability, autonomy and scalability
of context-aware pervasive services

Nikolaos Dimakis · John Soldatos ·
Lazaros Polymenakos · Axel Bürkle ·
Uwe Pfirrmann · Gerhard Sutschet

Springer Science+Business Media, LLC 2009

Abstract Multi-agent software architectures have gained in popularity due to their bene-
ficial behavior in designing and implementing sophisticated applications. However, current
approaches in implementing such architectures have led to application-specific, non-scalable
implementations which limit the reusablity and improvement of the whole architecture. More-
over, these attempts lack features to enhance the user experience, thus slowing the adoption
of the resulting services. In this paper we describe a fully-fledged multi-agent architecture
covering a large variety of preferred features including capabilities of ‘plugging’ ubiquitous
services, servicing mobile users, interconnecting remote similar architectures and interfacing
with advanced software components such as knowledge bases. This framework exploits a
wide-range of context-aware components making it essentially context-aware, allowing for
the development of ubiquitous context-aware human-centric services, which are the focus
of our research. To illustrate the flexibility of this architectural framework, we present four
services which were built using this architectural paradigm by different development teams
and elaborate on their overall behavior.

N. Dimakis (B)
Intelligent Systems and Networks Group, Electrical and Electronic Engineering Department,
Imperial College, London SW7 2BT, UK
e-mail: nikolaos.dimakis07@imperial.ac.uk

J. Soldatos · L. Polymenakos
Athens Information Technology, 0.8Km Markopoulou Avenue, 19002 Peania, Greece
e-mail: jsol@ait.edu.gr

L. Polymenakos
e-mail: lcp@ait.edu.gr

A. Bürkle · U. Pfirrmann · G. Sutschet
Fraunhofer Institute for Information and Data Processing, Fraunhoferstraße 1, 76131 Karlsruhe, Germany
e-mail: axel.buerkle@iitb.fraunhofer.de

U. Pfirrmann
e-mail: uwe.pfirrmann@iitb.fraunhofer.de

G. Sutschet
e-mail: gerhard.sutschet@iitb.fraunhofer.de

123

Auton Agent Multi-Agent Syst

Keywords Multi agent systems · Pluggable architecture · Pervasive computing ·
Smart spaces · Context-awareness

1 Introduction

We are experiencing a rapid paradigm shift in modern computing systems [25]. The emerging
pervasive and ubiquitous computing paradigm aims at transforming physical environments
into intelligent active spaces. Within these environments, the end-users enjoy a large variety
of non-obtrusive computing services which operate regardless of the users’ time and location
[56]. This new wave of computing services is based on the existence of a large sensor and
actuator infrastructure which, in addition to specialized software components and middleware
interfaces, forms a highly heterogeneous and complicated network structure. This structure
serves the application of the ubiquitous services as it moves place the sensors and other
devices into the background, making the overall human-human and human-computer inter-
action as non-obtrusive as possible by avoiding user distraction [19]. Furthermore, providing
services to nomadic users needs to take into account user mobility and the changing context
of roaming users [20]. It is therefore evident that context-awareness is a key characteristic of
pervasive and ubiquitous computing.

This promising new wave of computing services does not come without a number of
challenging issues. The first of these challenges derives from the nature of these systems.
Mechanisms are needed to deal with the large number of the underlying sensor and actuator
devices, including special modalities for mobile users. The solution comes by introducing
mechanisms to orchestrate the whole range of sensors, actuators and users, as well as the
interactions amongst them. In addition to that, the services should also come up with sensor
data collection mechanisms, which can deal with various heterogeneous formats, while at
the same time ensuring scalability and minimization of measurement errors [12,13]. Having
reliable sensor inputs at hand, pervasive applications need to process them to extract con-
text information. This processing is likely to entail sophisticated algorithms e.g. identifying
people and objects and tracking their locations.

One additional issue deals with the overall context modeling for identifying composite
contextual states to model human activity and interaction. These states are formulated by
aggregating elementary context cues originating from low-level context acquisition compo-
nents which base their operation on the underlying sensor set. These components process the
sensor output and generate simple context, meaning that they are dedicated to providing their
own perception of the current activities occurring in the smart space. This context needs to be
available to all ubiquitous applications in a scalable fashion, which in turn apply the service
logic based on the final composite context. Service logic execution involves the invocation
of actuating services that increase natural interactivity with the end-users. Apart from the
wide range of technology issues, pervasive computing services have to take into account
individual users’ concerns such as user preferences and privacy. Tackling with these issues
requires methods for securing access to secret and private data.

Overall, the pervasive and ubiquitous systems are highly distributed and heterogeneous.
Thus, the software architecture needs to be enforced with new middleware interfaces which
can facilitate the development, interconnection and deployment of these services. Ultimately,
they should assist in the overall service management and configuration which could introduce
additional tedious tasks which would otherwise have to be addressed by the users. Moreover,
these interfaces need to be equipped with additional features which enhance the overall

123

Auton Agent Multi-Agent Syst

application, namely autonomicity, scalability and security. Finally the middleware layer
should appear as a transparent layer to all modalities using it.

From a development point of view, the pervasive computing application comprises a
large number of distributed objects. A promising paradigm facilitating the development of
highly distributed infrastructures is the multi-agent software approach. Multi-agent systems
leverage distributed object technology and are commonly used in this area of computing
applications. Agents are software entities which function in an autonomous fashion in highly
dynamic environments as they can be accompanied by sophisticated logic. As a result, agent
technology provides capabilities that are perfectly in-line with the above characteristics of
middleware systems for pervasive computing [48]. This is reinforced by the fact that major
pervasive computing projects rely on agent-based middleware infrastructures.

Pervasive computing systems feature invisibility, heterogeneity, proactivity, mobility,
intelligence and security. Deploying systems with all these features is technically challenging
and an active area of research. Agent systems have been broadly deployed in the scope of per-
vasive services, towards addressing one or more of the above characteristics. These features,
however, cannot be directly used to classify agent based systems for pervasive and ubiquitous
computing. Most agent systems concentrate on more than one of the above aspects.

On the one hand, agents facilitate transparent and robust distributed communications
and on the other, they introduce negligible overhead in the service development process.
Therefore, early applications of software agents in pervasive computing focus on distributed
communication, interoperability and integration of components. Moreover, software agents
have been broadly exploited to facilitate interactions and coordination between humans,
sensors, applications and devices.

The application of multi-agent systems in pervasive computing services, however, is not
a trivial task for many reasons. First, agents should be autonomous enough to handle errors
that might occur during the excution of a service without introducing distractions to the end
user. Furthermore, the service should consider mobile users as well, and each service should
not be considered solely as an isolated application but also be able to “interconnect” and
combine its functionality with other services that are available. Additionally, the multi-agent
framework should be designed in such a way that it does not introduce numerous processing
and communication layers which would not favour the development of additional services.
For instance, in the communication aspect, this could be achieved by adopting existing and
widely accepted standards. As the pervasive services rely on a large heterogeneous net-
work of sensors and actuators, the multi-agent framework should facilitate the integration
of additional sensors and actuators, as well as combining the context that is produced by
sophisticated context acquisition components. Finally, the multi-agent framework should be
accompanied by an intelligent repository which is able to reply to intelligent queries that
might arise during the durations of the considered events.

In this paper we present a multi-agent framework for designing, developing, deploying
and managing sophisticated ubiquitous and pervasive services exploiting a wide range of
sensors and actuators while maintaining a high contextual level. We illustrate the overall
multi-agent framework and elaborate on the specialized individual goals of the individual
agent-members and how they facilitate the ubiquitous application.

The motivation for implementing systems based on this architecture was our participation
in the Computers in the Human Interaction Loop (CHIL) project [5], an Integrated Project
(IP 506909) under the European Commission’s Sixth Framework Programme, which is one
of the most prominent European research initiatives in the areas of pervasive computing
and multimodal interfaces. CHIL brought together several research labs, both in the EU and
USA, and to build services that leverage numerous perceptual technology components. CHIL

123

Auton Agent Multi-Agent Syst

perceptual technologies comprise a rich collection of 2D-visual components, 3D-visual per-
ceptual components, acoustic components, audio-visual (i.e. multimodal) components, as
well as output perceptual components like multimodal speech synthesis and targeted audio.
As a result, CHIL services provide ground for demonstrating the benefits of the introduced
software architecture. Note that CHIL services are built within prototype smart spaces which
serve as test-beds for perceptual, multimodal and middleware development. The authors oper-
ate a prototype smart space comprising several sensors and actuating devices, where several
pervasive applications have been built. Our experiences from building prototype pervasive
services provide a first class manifestation of the middleware framework.

2 Related work

The area of multi-agent systems has been an active area of research, supported by a wide
range of organizations (EU, DARPA, EPSRC etc.). Several frameworks have been introduced,
many of which have managed to evolve and gain significant popularity.

A prominent example is the Open Agent Architecture [32] (the successor of the Adaptive
Agent Architecture [7,30]), an agent-based system that supports task coordination and exe-
cution, as well as multimodal input integration. This architecture automatically transforms
and/or interprets information exchanged between applications, humans and devices, allow-
ing agents to be implemented in any language. Its core feature is a facilitator agent, which
receives “advertisements” from other agents and coordinates the communication amongst
them, making it a distributed computing environment rather than a multi-agent system.

A multi-agent platform that emphasizes sensor, device and application interoperability
and coordination is Hive [33], which has been primarily used to connect devices together
in support of some greater application. Hive agents provide information about humans, sen-
sors and devices enabling assembly of applications that leverage information from all these
sources. Hive agents enable distributed transparent autonomic communication that features
fault tolerance and high availability. Similar to Hive, MetaGlue is another software agents’
platform enabling natural interaction between humans and the environment [6]. MetaGlue
agents represent humans, objects, devices and enable their autonomous transparent interac-
tion. MetaGlue has been used to support projects under the umbrella of the Oxygen [11,43]
program, which is among the most important initiatives for pervasive, autonomic and human-
centric computing.

Moreover, additional attempts have been made which place their focus in solving spe-
cialized problems, rather than designing a generic architecture which can be used by various
designers of different servies. For example in [21], the Cougaar architecture is presented
which targets solving logistics planning problems (specified by the UtraLog project [55]),
making the architecture difficult to adapt to other uses as it requires code changes and modifi-
cation of the structure of plug-ins and agents. One additional drawback is the custom messag-
ing protocol for the agent interaction, despite the fact that many standards have been proposed
(such as FIPA, KQML etc.). Similarly, the Soft Real-Time Agent Control Architecture [23]
focuses on addressing the needs which arise during the real-time management of sensors in
real world deployments, which require special treatment by the software architecture. The
Smart Classroom Project [45], introduces a multi-agent software architecture which deals
with enhancing the educational experience. DimaX [17], deals with failure management,
scalability and adaptability in multi-agent systems, by introducing reusable fault-tolerant
techniques for service developers.

123

Auton Agent Multi-Agent Syst

RETSINA (Reusable Environment for Task-Structured Intelligent Network Agents) [51] is
a well-known open MAS infrastructure that supports communities of heterogeneous agents. It
provides two types of communication mechanisms; one for message transfer between peers,
the other for multicast that is used for a discovery process to let the agents find infrastructural
components. RETSINA provides matchmaker agents which are used to receive advertisement
of services by service providers, and get information of relevant providers. The RETSINA
agents communicate using KQML-compliant messages.

The A-globe agent platform [46] was designed to provide fast prototyping and application
development, by supporting the communication in cases when agents become inaccessible
from the rest of the agent community, agent migration and deployment on remote containers.
These features make it a well suited platform for simulation and implementation of physically
distributed agent systems with applications ranging from mobile robotics to environmental
surveillance by sensor networks. A-globe was designed as streamlined lightweight platform
which will operate on normal PC as well as mobile devices (PDA). It is able to cover a wide
range of scenarios; however, its communication protocol inside the inter-platform domain is
custom and does not follow any standard (such as FIPA).

JADE [26] is a very popular software framework for developing agent applications in
compliance with the FIPA [18] specifications for interoperable intelligent multi-agent sys-
tems. The goal is to simplify development while ensuring standard compliance through a
comprehensive set of system services and agents. JADE can be considered as an agent mid-
dleware that implements an agent platform and a development framework, as it deals with all
aspects that are not peculiar to the agent internals and that are independent of applications.

In addition to middleware frameworks focusing on the development of multi-agent
systems, a number of agent specific frameworks have been introduced which have gained
significant popularity. 2APL [10] and Jadex [40,27] are Belief-Desire-Intention (BDI) pro-
gramming frameworks, which allow using higher-level agent concepts for implementing
agents and facilitate the design and implementation of intelligent agents. 2APL agents can
generate plans by reasoning about their goals and beliefs, which are implemented in a declar-
ative way. Plans can consist of actions of different types. Like most BDI-based programming
languages, 2APL provides different types of actions such as belief and goal update actions,
belief and goal test actions, external actions (to be performed in the agents shared environ-
ment), and communication actions. Similarly, Jadex introduces a BDI layer on top of JADE.
A Jadex agent has two basic parts; an Agent Definition File (ADF) written in XML and a set
of Java classes, which specialize Jadex built-in classes, to specify how plans (intentions) are
constructed out of beliefs and goals (desires). It supports two kinds of plans, service plans,
which execute continuously, and passive plans, which execute only when triggered. These
plans are implemented in Java, and their triggering conditions are specified in the agent’s
ADF.

Jason [28,4] falls in the same category as 2APL and Jadex; however, it follows a differ-
ent approach. It implements the operational semantics of AgentSpeak(L) [42], a BDI logic
programming language. The type of agents specified with AgentSpeak(L) are sometimes
referred to as reactive planning systems. A Jason multi-agent system can be distributed over
a network effortlessly. Jason is equipped with a number of preferred features such as strong
negation, handling of plan failures, the possibility to run a multi-agent system distributed
over a network, fully customizable selection functions, trust functions, and overall agent
architecture (perception, belief-revision, inter-agent communication, and acting).

Also, the work on Electric Elves (E-Elves) [41], focuses on Human-Agent teamwork,
and demonstrates how agents can improve the efficiency of a team of users. Every user
on the team has an agent representative that knows the user’s location and his agenda. If an

123

Auton Agent Multi-Agent Syst

appointment needs to be changed, the agents can cooperate to reschedule, taking into account
the schedule of their user as well as other constraints like room availability. An important
feature of the system is that it allows for mixed initiative interaction, i.e. both the user and the
agents can take the initiative to make or change appointments. The agents have adjustable
autonomy regarding their initiative. For example a user can choose to let his agent reschedule
his appointments autonomously or to be informed when a rescheduling is needed and then
reschedule himself.

3 The CHIL agent framework

To clarify the scope of this paper we briefly describe the complete system architecture in
the next section. Our overall architectural framework has been described in detail in [47],
including sensor control and context acquisition interfaces for context-awareness. The rest
of this paper will focus on the service framework of the architecture, which is implemented
as a society of software agents. We will discuss the benefits of the agent society in the scope
of designing and implementing human-centric ubiquitous services.

The implementation that we present in this paper is based on a different approach in mod-
eling the activity of agents than BDI. Instead of following the BDI paradigm, each agent
(or service) in the CHIL Framework can use its own “situation model”, which describes the
transition from one state to the next [8] according to environment conditions or state of other
agents. Starting at a given state, and given a set of contextual information that captures the
state of the environment, the agent or service can trigger appropriate actions depending on
whether such a transition is possible. Situation models can be described in XML format and
parsed at the initialization phase of each agent [16], which allows for increased flexibility
when multiple development teams need to collaborate on the same service. In general, the
CHIL Framework has been designed so that each individual development team has discrete
roles and should not focus on specific details on how to interface with the overall framework.
To the best of our knowledge the CHIL architecture, and the CHIL Agent Framework in
particular, provide an excellent set of tools and libraries which facilitate the integration of
context-aware services to support human interaction, in smart spaces.

In essence the requirements for the success of an agent framework to support such ser-
vices are: (1) to introduce a low processing overhead as each agent should be able to run on
light-weight devices such as PDAs, (2) to be able to handle failures that might arise during
an interaction event, without the user being aware of this, (3) to follow standard interaction
protocols with the use of ontologies so that services could interact during an event with
common vocabulary, (4) to separate the application logic from the communication chan-
nels, (5) to allow interfacing with a global, consistent information repository, that is able to
answer intelligent queries, and (6) to provide automated mechanisms to service the end user.
We claim that the CHIL Agent Framework provides a well-rounded “marriage” of all these
requirements.

The CHIL Framework is designed to tackle several issues which arise when a number of
different services are to be interfaced, which may require the integration of heterogeneous
components, but not necessarily agents[16]. We place our focus on human-centric services
which interface with humans in a non-intrusive fashion. Our framework allows for a number
of different services to co-exist and interface with each other, and to take advantage of a wide
range of sensing and actuating equipment. In subsequent sections of this paper, we elaborate
on the features of our platform which briefly are:

123

Auton Agent Multi-Agent Syst

– To tolerate both service and hardware failures,
– To provide a mechanism for enabling the implementation of service specific code in

pluggable handlers by keeping the agent service-independent,
– To allow for a centralized information repository, maintaining all the required information

about the components/agents/devices that are available in the smart space,
– To interface with different devices, such as smartphones and PDAs,
– To allow the interconnection of similar “light-weight” smart spaces to interface with the

main one,
– To facilitate the integration of different ubiquitous services, and
– To allow the services to interface with each other and exploit the joint functionality (e.g.

an intelligent recording service combined with a meeting support service).

These features have been optimized to meet the requirements of a family of autonomous
human-centric services. For instance, failure handling has been addressed in a number of
existing frameworks in the literature; however, the nature of our scenarios prohibits the
application of existing techniques due to the fact that our scenarios require the coordination
of a large number of different components which affect each other (e.g. a video recording
component requiring a camera that is, given a set of characteristics, retrieved from a knowl-
edge base, or a personal agent that is activated as soon as a person enters the room, etc.). As an
additional factor, we point out that the user should not be aware of any recoverable error that
might arise, and that the service should tackle each case in a transparent fashion, delivering
an uninterrupted service to the end users. The final aspect is of major significance to the
CHIL Framework, and our focus was to design an architecture that, given the constraints that
arise from the nature of such services, can support the users during their interaction, and to
provide a rich set of features.

The JADE (Java Agent Development Environment) platform [26] was selected to be the
backbone of our system as it is equipped with many features, which make it a highly flexible
and secure platform. As seen in [1], JADE performs adequately in many of the evalua-
tion criteria which include agent mobility capabilities, administration, network traffic issues,
stability, security, debugging capabilities etc. Finally, JADE is compliant to the FIPA (Foun-
dation for Intelligent Physical Agents) [18] standard for agent communication, a standard
which is being used by a plethora of novel multi-agent systems. All agents in the system are
based on the JADE Agent that provides basic agent functionalities like sending and receiving
messages, life cycle management etc. JADE is the most mature implementation of the FIPA
specifications. It comes with many tools to administer and perform tests with the agent plat-
forms: a GUI for inspecting the state of running agents, launching new agents and sending
messages to agents; a sniffer agent and more elaborate examples.

The CHIL Agent Framework tries to place a “shell” around each agent or service, enabling
it to interact with the smart space, and to provide an unobtrusive human-centric service. This
“shell” is shown in Fig. 1. Our framework shares some common characteristics with the
frameworks presented in Sect. 2, such as the BDI framework, and that is on the issue of
decision making depending on the environment conditions. In contrast to the BDI paradigm,
the CHIL agents allow the integration of “situation models” [8] which model the human
interaction in the smart space by identifying milestones that would appear in a human-inter-
action event. These models can be designed by a member of the service design team and do
not need to be formulated in a proprietary fashion, a key parameter when numerous devel-
oping teams are collaborating. For instance, the situation model of the Memory Jog service
described in Sect. 4.1 is described in an XML format [16]. Furthermore, the CHIL Agent
Framework places significant effort in using standard interaction protocols (FIPA), which are

123

Auton Agent Multi-Agent Syst

Fig. 1 How the CHIL Agent
encapsulates the JADE Agent
with the pluggable behaviors,
autonomy, device independence,
interfacing with the knowledge
base, and the situation modeling

implemented by behaviors loaded on run time (pluggable behaviors), and using a common
intelligent information repository that can be accessed by any component of the CHIL archi-
tecture. Such features have made the CHIL Agent Framework a very strong backbone of the
CHIL services. The prototype applications that we present in Sect. 4, have been developed
by different teams of the CHIL Consortium using the same agent framework.

The CHIL Agent Framework has been meticulously designed to meet the requirements
that appear in pervasive human-centric context-aware services. It targets primarily envi-
ronments which are equipped with a large collection of sensors, actuators, and perceptual
components and tries to orchestrate their interactions in delivering useful services to the
end users. Compared to other frameworks such as A-globe or RETSINA the CHIL Agent
Framework provides a fully FIPA-compliant communication scheme, as not only a number
of different services and components need to be able to interact, but also all developing teams
should have a common vocabulary and interaction protocols. Furthermore, the CHIL Agent
Framework has specialized agents which are either pending on requests by other agents, or
continuously “scout” the network for critical conditions, such as the failure of an agent, and
act accordingly. Moreover, the CHIL Framework has three types of management services,
not only on the sensor and agent level (using each middleware’s management tools), but
also using the Smart Space Resource Manager (SSRM) [49], which monitors and controls
the whole infrastructure such as the perceptual components, sensors, and actuating services
available. One additional usage of the SSRM is to facilitate the deployment of the services
by providing an overview of the current perceptive capabilities of the smart space in terms
of sensing and actuating equipment as well as the presence of context-acquisition compo-
nents. Finally, the SSRM is accessible by any component in the CHIL Framework using
webservices.

3.1 The CHIL reference architecture

The CHIL Reference Architecture (also called the Ice Cube) provides a collection of struc-
turing principles, specifications and Application Programming Interfaces (APIs) that govern
the assemblage of CHIL components into highly distributed and heterogeneous interopera-
ble systems. The CHIL Ice Cube is designed as a layered architecture model (Fig. 2). Each
level derives from the abstraction of the information processed and data flow characteristics
such as latency and bandwidth, based on the functional requirements from the CHIL system
design phase.

123

Auton Agent Multi-Agent Syst

and

Perceptual
Technologies:

stream processing

Ontology

se
it

ili
t

u
LI

H
C

Control Metadata

Low-level

Fig. 2 The layer model of the CHIL Reference Architecture (Ice Cube)

The upper layers—User Services—manage interactions with humans by means of user
services hosted on various interaction devices. The components at this level are responsible
for communication with the user and for presenting the appropriate information at appropriate
time-spatial interaction zones. The User Services utilize the contextual information available
from the Situation modeling layer. In projects like CHIL, where a number of service devel-
opers concentrate on radically different services, it is of high value that a framework ensures
reusability of services. To this end, we have devised a multi-agent framework that:

– Facilitates integration of diverse context-aware services developed by different service
providers. Facilitates services in leveraging basic services (e.g. sensor and actuator con-
trol) available within the smart rooms.

– Allows augmentation and evolution of the underlying infrastructure independent of the
services installed in the room.

– Controls user access to services and supports service personalization through maintaining
appropriate profiles.

– Enables discovery, involvement and collaboration of services.

The middle layer—Situation modeling—is the place where the situation context received
from audio and video sensors is processed and modeled. The context information acquired
by the components at this layer helps CHIL services to respond better to varying user activi-
ties and environment changes. For example, the Situation modeling layer answers questions
such as: Is there a meeting going on in the smart room? Who is the person speaking at the
whiteboard? Has this person been in the room before? Specifically, this layer is also a col-
lection of abstractions representing the environment context in which the user interacts with
the application. It thus maintains an up-to-date state of objects (people, artifacts, situations)
and their relationships. The situation model acts as an inference engine, which watches for

123

Auton Agent Multi-Agent Syst

the occurrence of certain situations in the environment and triggers respective events and
actions.

The lower layers—Perceptual Technologies—host perceptual components that extract
meaningful events from continuous streams of video and audio signals. All kinds and vari-
ations of perceptual components reside at this layer to perceive user actions in a smart
environment. In CHIL we actually counted a total of 64 such components provided by 8
different suppliers. These components process the sensor signals from one modality (body
trackers, face recognizers) or modality combinations (audio-visual speech-recognition) and
deliver the events to upper layers. The CHIL Reference Architecture defines the API con-
tract (Access, Subscriber, Control, Introspection, and Admin APIs) as well as the lifecycle
(Unregistered, Registered, Launched, Running) to which the perceptual components must
adhere to be considered CHIL-compliant.

The vertical columns—CHIL utilities and Ontology—provide support across layers. The
CHIL utilities provide global timing and other basic services that are relevant to all layers.
The Ontology provides a definition of CHIL concepts and a directory service that provides
access to information at any layer. It is worth emphasizing that the layers are not strictly iso-
lated. For example, a multi-modal service residing at the User front-end can render a video
stream originating from the Logical sensors and actuators at the bottom of the Ice Cube.

In the following we describe the features of the agent community that implements the
User Services layers of the Ice Cube.

3.2 Intelligent messaging

As proposed in the FIPA Abstract Architecture Specification [18], the information exchange
between agents is based upon a well-defined communication ontology, in order to ensure that
the semantic content of tokens is preserved across agents. The importance of such a common
semantic concept is increased by the distributed development of the various services and the
necessity of the service developers to understand each other correctly.

The CHIL Communication Ontology is part of the overall CHIL domain ontology and,
like this, completely defined using the Web Ontology Language OWL [36]. OWL combines
well proven Web technologies with state-of-the-art Description Logics and is available in
three flavors. In CHIL, OWL DL (OWL with decidable Description Logics) is deployed for
modeling the CHIL domain of discourse. The CHIL domain ontology is split into separate
Web resources and can be composed on demand from smaller units using OWL’s import
mechanism. It comprises several modules that are physically represented by Web resources
with distinct URLs. The idea of modularization is that software developers only need to
reference those parts of the ontology that are relevant for them. Additionally, modularization
increases performance and has been beneficial when deploying the agent communication
subset of the ontology. The CHIL ontology consists of the following modules:

– chil.rdf is the main file of the CHIL Ontology. It imports all the domain specific modules
and thus can be considered as a kind of main setup file.

– chil-core.rdf contains the axiomatic knowledge shared by many architectural layers of
CHIL that are common to all smart room installations. It can be considered as the core of
the CHIL ontology.

– chil-pc.rdf contains the descriptions of all perceptual components in CHIL. It consists of
a generic perceptual component model, a set of standard categories of perceptual compo-
nents, and finally descriptions of all vendor-specific components.

– chil-ca.rdf contains the agent communication part of the ontology.

123

Auton Agent Multi-Agent Syst

Fig. 3 The Protégé tool for managing and visualizing ontologies, showing a section of the OWL-based CHIL
ontology structure

– chil-isl.rdf finally gives an example of the factual knowledge of an actual CHIL
installation.

As part of this modular concept, the CHIL communication ontology is fully integrated in
the CHIL domain ontology. On the one hand, it uses concepts of the core ontology whenever
artifacts that are part of the common domain are required in answers to requests. On the other
hand, it extends the core ontology by tokens, which are specific to agent communication
and not defined in the core ontology, particularly agent actions for requesting services and
specialized result classes. Simultaneously, the communication ontology is based upon the
Simple JADE Abstract Ontology, an elementary ontology provided by JADE as a basis for
all ontological message exchange. New communication concepts therefore are subclasses of
the JADE entries Concept and AgentAction.

This conceptual design can be seen in Fig. 3, which shows a part of the CHIL communi-
cation ontology visualized by the Protégé tool. The OWL class tree first lists the concepts,
which are part of the core ontology and which are used as content of result messages in the
agent communication, e.g. Meeting, Person and Contact. The remaining part of the class tree
illustrates that the CHIL communication ontology can be seen as the entirety of all service

123

Auton Agent Multi-Agent Syst

Fig. 4 The agent structure of the CHIL agent tier

specific ontologies. Each service may define its own ontology for the intra- and inter-service
communication, which is plugged in the appropriate agents at startup (see Sect. 3.5). The
service ontologies consist of agent actions used as requests to agents and common concepts
used as result notifications to the original requester. Figure 3 represents this structure by
grouping the ontology entries by the appropriate services and the kind of entry.

The representation also points out one particular example of the Connector Service, a
context-aware service that handles connection requests between people (cf. Sect. 4.3), that
is representative for all entries: PersonAvailability is the answer to an agent action, which
serves as a user request to the CHIL system in order to receive up-to-date availability infor-
mation about a participant. As result, the user receives an instance of PersonAvailability
indicating how the requested person will be alerted (quiet, mute, normal, loud), whether he
is available by message and/or phone, the person identificator and his phone numbers. All
received information depends on the current location and status of the requested participant
(in meeting, in smartroom, inside building, outside, in car, unknown) and the social relation-
ship between the two parties (VIP, business, personal, unknown) and, of course, subject to
personal preferences and privacy issues (cf. Sect. 3.9).

Based on the CHIL communication ontology, the message handling of the agent frame-
work consists of several parts. The CHILAgent, a basic abstract class for all agents (cf.
Fig. 4 which illustrates our implementation structure) provides methods for creating, send-
ing, receiving and decoding messages, which are strictly based on the semantic entries of the
communication ontology. Furthermore, these methods, together with additional initiator and

123

Auton Agent Multi-Agent Syst

responder classes for submitting and receiving messages, ensure that the agent communica-
tion is strictly compliant to the FIPA interaction protocols and communicative acts. Thus, the
FIPA compliant messaging implementation of JADE has been elevated on a semantic level by
enhancing and replacing the JADE methods with both FIPA compliant and ontology-based
methods.

The message handling is completed by the CHILAgentManager. This agent is a central
instance encapsulating and adding functionality to the JADE Directory Facilitator (DF), act-
ing as a directory service, and coordinating the agent communication. Each agent behavior
informs, on startup, the Agent Manager about the type of messages it can accept, and registers
the agent’s services, including required resources for carrying out that service. The CHIL-
AgentManager acts, except for a few special cases, as a matchmaker, providing a requesting
agent with handles to appropriate service agents capable of satisfying the request. Moreover,
it ensures in cooperation with the CHILAgent that registration and deregistration of agents,
modifications of agent and service descriptions, and the search for services is executed based
on the communication ontology and fully conformant to the FIPA specifications.

3.3 Autonomy

Fault-tolerance has been discussed extensively in the literature, as in [17,31,57], where
the authors focus on mechanisms for failure handling to ensure robust multi-agent sys-
tems. Also in Teamcore [52], every agent in an organization has an associated Teamcore
proxy that records its membership in various teams and keeps track of active commitments
made to these teams. The Teamcore proxies communicate with their corresponding agents
to monitor the agents’ ability to fulfill commitments and to inform the agents of changes
to those commitments, but also amongst themselves so as to ensure coherent execution of
team plans and the robust achievement of joint goals. Given this teamwork knowledge,
the Teamwork proxies are able to detect anomalies in the execution path of a plan. In
addition to failure handling, E-Elves [41,44] deal with the autonomic concept of agent
systems, and in particular the issue of adjustable autonomy, where each agent is able to
determine the degree to which it acts autonomously, so as to improve its performance by
not being dependent on the user or too intrusive in its human interaction, while learning the
user’s preferences.

Our approach in providing autonomous behavior of both the context-acquisition layer
and the end-service delivery has been presented in [15]. In this section we will outline the
structural components which provide these features, and will focus mostly on the flexibility
and performance of the introduced mechanism.

The challenges that arise in context-aware human-centric services pertain to the user expe-
rience; essentially the fault tolerant scheme should introduce minimal distraction to the users
and at the same time it should be autonomous enough to investigate other alternatives. For
instance, as far as hardware failures are concerned, the context-acquisition components are
able to detect that a sensor has failed by the data feed being idle and divert their input from
another sensor using the knowledge base. On the other hand, a software agent failing should
cause no problems during an interacting event between users and, if needed, to maintain its
latest state at all times. Such issues make the adoption of such services a very challenging
task; however, the CHIL architecture has managed to deliver a high level of quality to the
supported services.

123

Auton Agent Multi-Agent Syst

For the purpose of achieving these goals, we adopted two widely used libraries:

– Hibernate [22], which is an object/relational persistence and query language for Java, and
– NIST Smart Flow [50], which is a specialized middleware that generates stream flows

that wrap around the raw sensor data, enabling many processing components to subscribe
to a sensor’s output.

Hibernate is a highly flexible library which does not introduce additional overhead in
the design or implementation phase of the development cycle. It is fully customizable using
external files and allows for any type of object to persist. Moreover, it allows for defining any
constraints present in the relational model (i.e. uniqueness, null values etc.), entity integrity
as well as referential integrity. Finally, the persistent classes are not required to implement a
specific interface nor extend a persistent super class, making Hibernate’s persistent classes
reusable in different contexts and persistence approaches.

Hibernate was selected over a number of persistence frameworks such as Torque [54],
iBATIS [24], or TopLink [53]. Our main interests were performance, portability across dif-
ferent relational databases and to provide a fully object-relational mapping (ORM), without
requiring a significant adaptation of the existing code, for instance by extending different
classes. Hibernate is one of the leading frameworks in this area providing a fully functional
and high-performance object/relational persistence.

The NIST Smart Flow is a highly flexible middleware which undertakes the distributed
high-performance transfer of a stream (e.g. video or audio) to any computer within the smart
space, which facilitates decentralized processing of sensor streams by multiple consumers.
Distributed processing is essential for two main reasons:

– To allow more than one algorithm to leverage a particular sensor stream. For instance, a
video stream may be needed by a body tracking algorithm and a visual personal identifi-
cation method.

– To distribute the processing load to more than one computer. This is particularly impor-
tant in the case of computationally demanding real-time multimedia processing, as our
scenarios.

To the best of our knowledge, Smart Flow is the most prominent middleware in this area,
and has been used in a number of large projects with great success.

3.3.1 Service autonomy

In our implementation some dedicated agents play a very specialized role. The self-healing
control is managed by two of the core agents, the AutonomicAgent which is the base class
for all autonomic agents in our framework, and the AutonomicAgentManager. Exploiting the
benefits of the JADE Framework for inter-agent communication, the AutonomicAgentMan-
ager is at regular intervals querying the Agent Management System of JADE for the status
of specific agents. The result of this request reflects the current status of all registered agents
participating in the framework. In the case of a dead agent, the AutonomicAgentManager
initiates the regeneration sequence. This sequence is dependent on the type of self-healing
the agent has requested during registration. We consider two types of registration, which
signify a different handling method: Stateless and stateful handling. The agents specify their
registration type during their registration to the AutonomicAgentManager as soon as they
boot up. In Sect. 5 and in Fig. 11, we illustrate the overhead which is introduced by our
framework for both cases of autonomic handling (stateful and stateless).

123

Auton Agent Multi-Agent Syst

In contrast to the Teamcore approach, no additional agents are needed to implement this
fault tolerance scheme. All agents register to the CHILAgentManager and AutonomicAgent-
Manager which is monitoring their status. However, the AutonomicAgentManager is only
monitoring the agents’ status and is not aware of the agents’ capabilities to fulfill tasks, thus
it cannot provide the features of the Teamcore agents.

3.3.2 Stateless handling

Stateless handling implies that the agent does not maintain any state during its execution. The
regeneration sequence for this type of agent is a straightforward procedure based on restarting
the agent, if necessary on a different platform. The agent registers again and participates in
the framework by processing incoming messages. We follow this approach in the cases when
agents are assigned to control actuating devices, such as the Targeted Audio Device [34,35],
or projectors.

The reason is that such agents pend on incoming requests and do not maintain a state dur-
ing the execution, as they actually act as message receptors. To clarify this, when a request
arrives, the agent attempts to control the actuating service that was requested. If this was
successful, then it sends back an acknowledgment informing the sender about the outcome
of its request. If this acknowledgment is not received after a period of time, due to the fact
that the agent died, the agent that made the initial request, sends the same message again.
While this approach, in the worst case of cascading crashes, allows for repeated requests to
an actuator controlling agent, the situation can be overcome, if initiating agents give up after
a number of failed attempts. Similar actions are taken when an agent sends a request to an
actuating agent, which has either failed or is in the process of being restarted.

3.3.3 Stateful handling

In the case when an agent needs a state to be maintained during its execution, the Autonom-
icAgent behaves differently. At regular intervals, each AutonomicAgent stores a serialized
object in a database together with a timestamp. If the agent dies and the AutonomicAgent-
Manager is aware of this fact, it attempts to restart the corresponding agent, which in turn
reads the last entry of its serialized object from the database, using Hibernate. The agent
retrieves this entry which reflects its last known state, and attempts to re-initialize its internal
variables. As soon as the old state is reloaded, the agent is able to participate again in the
framework. The process of registering to the AutonomicAgentManager is repeated as before.

3.3.4 Tolerating hardware failures

To be able to tolerate hardware failures, we make use of the NIST Smart Flow middleware.
The processing component is able to determine whether the input stream is arriving or not, as
it constantly polls the Smart Flow interface for new data. If the output stream is not available
for some time, then the processing remains idle, and if possible, the algorithm is diverted to
another input. This method has been used in the case of the Intelligent Meeting Recording
service [2], which selects the best video stream to capture the speaker. To illustrate this, we
provide the following example. Every camera that exists in a smart space is controlled by a
camera driver. Each camera driver, using the Smart Flow middleware transmits its captured
streams to the services which have subscribed to receive this type of input. Should a camera
fail, the camera driver has no new data to send, thus the flows that are generated by the mid-
dleware are not transmitted. The receiving service processes all incoming streams as they

123

Auton Agent Multi-Agent Syst

arrive and since one of them is not generating anything, the service becomes aware of the
failure and disregards it. If the camera is restarted, then the camera streams are captured and
transmitted using the middleware, making it transparent to the processing components.

While this feature is not implemented as an agent, its configuration can be managed by
a dedicated agent which controls and supervises the data flow. In collaboration with other
middleware interfaces (such as the IBM CHiLiX library [29]), the agent can divert the input
and output data to the appropriate receptors.

3.4 Pluggable behaviors

In order to allow the distributed development of services and to facilitate their integration and
configuration, a plug-in mechanism has been designed that enables the implementation of
service specific code in pluggable handlers by keeping the agent service-independent. In the
view of this plug-in mechanism, an agent of the CHIL system consists of three main parts:

1. the agent itself,
2. the agent’s behaviors,
3. and the XML based configuration files.

The agent itself should contain only the common methods and attributes all concerned
partners have agreed on. This will result in a stable agent. All other, service specific code
should be inside the behaviors, which have to implement certain interfaces to be pluggable
into a CHIL agent. Finally, the XML configuration files should contain a specification of the
required behaviors, including their type and class.

At start-up time the agent looks into its configuration files to determine which behaviors
have to be instantiated and added to the agent’s behavior queue. Since the necessary code
for this mechanism is concentrated in the basic CHILAgent and its helper classes Configu-
rationSupport and PluginSupport, the source of the configuration data can be switched very
easily; e.g. it is possible to get this data from a knowledge base instead of the XML file, by
using the CKBSAgent which interfaces with the knowledge base. Furthermore, the plug-in
mechanism is available to all agents in CHIL derived from CHILAgent without extra work
for the agent developers.

Three types of pluggable handlers are considered to be necessary, namely

– Responders are added to the agent’s behavior queue and react on incoming ACL (Agent
Communication Language) messages sent by other agents.

– EventHandlers are put into a map along with the event types they are registered for. They
are triggered by events from outside the agent’s world, e.g. the user’s GUI, a perceptual
component, the situation model or a web service.

– SetupBehaviors are responsible for service specific initialization. They will be executed
in the setup phase of an agent since they do not have to wait for a trigger to be activated.

Figure 5 illustrates the relationship between the concrete implementation of pluggable
handlers and agents and their respective base classes.

Configuration of the agents’ behaviors is done manually by the respective service devel-
oper or a CHIL system administrator. The described plug-in mechanism does not handle
contradictions in the configuration files. An automated detection and resolution of conflicting
behaviors would require a more formal description of the agents’ tasks and further research.

A similar mechanism for pluggable behaviors can be addressed by BDI-based languages
as in platforms we mentioned in our related work section, and can actually perform better in
comparison with event handling mechanisms that we propose in this section when used in

123

Auton Agent Multi-Agent Syst

CHILAgent PluggableHandler

SetupHandler EventHandler Responder

SomeConcreteAgent
P

lu
gg

ab
le

-
H

an
dl

er
1

P
lu

gg
ab

le
-

H
an

dl
er

2

P
lu

gg
ab

le
-

H
an

dl
er

3

P
lu

gg
ab

le
-

H
an

dl
er

4

P
lu

gg
ab

le
-

H
an

dl
er

5

P
lu

gg
ab

le
-

H
an

dl
er

6

Fig. 5 The use of pluggable handlers

interfacing with sensors or actuators. However, in the scenarios that we focus on, the actual
sensor and actuator control is not guaranteed to be made by agents, or even to be implemented
by a specific vendor. These agents are actually a “bridge” between the CHIL Agent Frame-
work and the sensor/actuator layer of our architecture. Agents receive events from the agent
framework, and interpret them in device controlling commands using IBM’s CHiLiX library
[29], a high performance library which has been developed in the scope of the CHIL project,
and allows the controlling of either context acquisition components or device controllers.

3.5 Pluggable services

The Pluggable Behaviors mechanism allows service providers to create new service function-
ality and plug it into multiple agents without the need for recompilation. Since new functions
inherently need new communication contents, a service must have the option to define, use
and communicate new messages, which can be understood and compiled by all participating
agents. Furthermore, to fully exploit the features of the CHIL services as a whole, a service
must be able to communicate and cooperate not only with multiple agents, but also with
multiple services. Using a global communication ontology for all services would foil every
plug-in mechanism and distributed development; service providers would have to agree on
a common ontology with all other parties before starting to realize new service functions.

As a consequence, the agent framework on the one hand had to provide a mechanism that
allows service providers to define their own service specific communication ontology, and on
the other hand enable agents to participate in multi-service communication, handle messages
from various services and work with several ontologies. Hence, services and their commu-
nication ontologies had to be handled similar to Pluggable Behaviors: the framework should
provide a mechanism to plug them in without the need for recompiling the agent’s code. To
this end, the Pluggable Behaviors mechanism has been extended to Pluggable Services by
realizing a plug-in technique for services and service specific communication ontologies.

A service is integrated into the CHIL system by means of an (XML based) configuration
file. This file specifies the service name, the participating agents and their pluggable han-
dlers, and the service specific communication ontology (see Fig. 6). Each pluggable handler is
defined by its type (setup, event or responder) and its class name. A priority value assigned to
each handler can be used to determine the order of execution in case of competing behaviors.

123

Auton Agent Multi-Agent Syst

Fig. 6 Service configuration XML schema

The service ontology is specified by its name, its namespace, and the location and name of
the ontology class. During the startup phase, each agent parses the service configuration files
and determines the pluggable handlers and the service ontologies, which are dedicated to
it. The handlers are registered as described in Sect. 3.4, the service specific ontologies are
integrated into the agent’s ontology management by the ontology merging mechanism of
JADE.

Furthermore, the configuration file provides an additional feature to system developers and
administrators: it allows enabling/disabling of certain functionality by simply adding/remov-
ing the appropriate elements in the configuration file without having to recompile the source
code. In a similar way, the services are declared to the CHIL system: A master configuration
file (based on XML as well) lists all participating services and the names of their config-
uration files. Again, enabling and disabling complete services can easily be performed by
adding or removing the appropriate configuration elements.

3.6 Device independence

A major challenge in human-centric ubiquitous services, is that the service should be avail-
able to the end-users regardless of their location and time. Servicing mobile users is a difficult

123

Auton Agent Multi-Agent Syst

Fig. 7 The Memory Jog Service Graphical User Interface in the cases of a desktop computer and a PDA
device

task as they should at all times enjoy the same quality of services as those who are located
within the smart space, equipped with high-end systems. In addition to that, device lim-
itations should be taken under consideration, thus requiring some effort in adjusting the
communication channels and visual information.

Our implementation caters for different types of devices. Each device is modeled by a
DeviceAgent as seen in Fig. 4. The main DeviceAgent is the NotebookDeviceAgent which is
used in the case of Laptops and Desktop computers. In addition to this DeviceAgent, others
have been designed such as the CellphoneDeviceAgent and the PDAAgent, which handle
requests for cellphone devices and PDAs, respectively.

In the case of the NotebookDeviceAgent, a DeviceDesktop has been designed which visu-
alizes the information that the user initiates or that the service is providing. This graphical
user interface is directly connected to the NotebookDeviceAgent, which also communicates
with the users’ PersonalAgent for personalization filtering, a feature presented in Sect. 3.9,
and coordinates requests from the user. In the case of the PDAAgent, the DeviceDesktop is
more compact and simple, constraints which arise due to computing power and screen issues.
In Fig. 7, we show the graphical user interface of one of the services that has been developed
with this framework, both in the case of a desktop computer and a PDA.

The PDAAgent interacts with the rest of the smart space using a serialized form of an
ACLMessage, to avoid having to cope with different message formulation types. On the
receiving end, an agent which receives the messages from the PDAs, and in general any
wireless device, de-serializes the message and sends it to the appropriate agent, acting as a
gateway between the devices and the actual smart space [14].

3.7 Directory service

Sophisticated context-aware services require the presence of a directory service mechanism
for registration and later lookup. While standard approaches are able to manage large quanti-
ties of information, they come with limitations when handling components that can insert or
retrieve information. Furthermore, in large-scale human-centric context-aware services with

123

Auton Agent Multi-Agent Syst

numerous types of sensors, actuators and other components, information modeling becomes
a challenge as, in addition to maintain information about each component individually, the
directory service should be able to respond to all types of queries about the available compo-
nents in the smart room; i.e. from determining which services are operating in the smart room
to what type of sensorial sources each component has subscribed to. In our implementation
we have developed a directory service leveraging a knowledge base which serves requests
and handles registration of any component in the architectural framework [37].

The managing agents are the CKBSAgent and KBAgent, which wrap around the knowledge
base and database, respectively. The two agents interpret agent requests into ontology and
SQL queries and appropriately divert the request to the corresponding service. In the case of
the database, the resulting reply is compiled to be a member of the communication ontology,
described in Sect. 3.2. This enables the bundling of the information to be transmitted as a
single ontology class, such as ‘Camera’, which contains information about the camera type,
the location of the camera, etc. While these types of queries are more frequently used, our
knowledge base mechanism is also able to handle queries that are vague. For instance, a
service may be interested in getting the list of “all cameras that are facing the door”, or “a
panoramic camera”, etc. The CKBSAgent interfaces with the knowledge base service, and
the latter determines the answer depending on the information at hand.

While several approaches to directory services middleware exist, this approach has signifi-
cant advantages over conventional technologies such as UPnP (Universal Plug ‘n’ Play), SLP
(Service Location Protocol) and UDDI (Universal Description, Discovery and Integration),
as these are not particularly tailored to the range of information and components needed in
such a ubiquitous computing environment. For instance UDDI and SLP are service-oriented
approaches, while UPnP is clearly device-oriented. Our approach introduces an intelligence
flavour in this process, as the knowledge base service is able to infer information from exist-
ing sets of meta-data according to the current context. The knowledge base service is able to
provide directory services, not only for the available devices, but also for available services,
perceptual components and others.

The presence of a global intelligent database assists greatly in enabling the architecture to
handle remote participants by not limiting them to use just portable devices such as a PDA, a
feature described in the previous paragraph. In the following section, we illustrate a feature,
which is based on this directory service and interconnects remote spaces.

3.8 Satellite spaces

One of the key problems that ubiquitous systems face is the issue of scalability in terms
of expanding their reachability to more users. Users can be both mobile or not. While we
addressed mobile users in a previous paragraph, we also place significant effort in servicing
users who are not in the smart space but in a remote location, having a smaller set of sensing
equipment, i.e. a webcam and a microphone. The issue in this case is to manage and deliver a
high quality service to this kind of users, by making them feel as active participating members
of the event currently taking place in the smart room. We consider that these users are located
in light-weight smart spaces, which we call “satellite spaces”. To deal with this problem we
devised a mechanism which, by interfacing with the directory service, is able to “glue” two
or more smart spaces together enabling the remote participants to interact with the people
currently present in the main smart space.

The basic functionality lies in the mapping between communication ontology members to
XML messages, which are encoded on the “server” side and decoded on the “client” side. All

123

Auton Agent Multi-Agent Syst

messages are encoded and transmitted to the remote user. This process involves querying the
database and the knowledge base, which reply by providing the active “smart space servers”
and enable the communication between the personal agents of both the local and remote
participants.

The satellite spaces heavily use the fault-tolerant Intelligent Meeting Recording service
[2]. The reason is that any user that is located in a remote space other than the main smart
space, requires a video stream to be sent to his location. In general, a smart space consists
of a large number of camera sensors operating at the same time, each of them covering only
a part of the room itself. The user thus would have to manually decide which stream to
view at all times, which would require not only his constant intervention, but also to receive
large amounts of data coming from all the cameras. Our Intelligent Meeting Recording is
able to act as an “intelligent director” by selecting the optimal stream and transmitting it to
the remote users, reducing the amount of unnecessary information that is transmitted. The
Intelligent Meeting Recording selects at all times the video stream with the most frontal view
of the speaker and considers this as the primary video stream for storing and transmitting it
to remote users.

3.9 Personalization

In a CHIL environment computer assistants attend to human activities, interactions and inten-
tions. Instead of reacting only to explicit user requests, such assistants proactively provide
services by observing the implicit human request or need, much like a personal butler would.
Each CHIL user is described by a user profile, which contains a set of personal attributes
including administrative data relevant to the CHIL system (e.g. access rights, user capabili-
ties and characteristics) and individual personality information like professional and personal
interests, contacts and the social relationships between the contacts and the user (e.g. VIP,
business or personal) as well as interaction, device and notification preferences such as note-
book, PDA, cell phone call, SMS, MMS, targeted audio, etc. The user profile also contains
information like how a user wants to be notified about a phone call depending on his current
activity and his relationship to the caller. These personal settings allow the CHIL system and
its context-aware services to interact with and to assist its users taking into account everyone’s
individual needs and preferences.

The administrative part of the user profile is maintained by the system administrator; per-
sonal data can be added and modified by the user exclusively by means of a GUI. Access to
and control of the user profile is managed by the user’s PersonalAgent. Thus, the Personal-
Agent not only operates as a personal assistant, but also as a privacy guard to both sensitive
and public user data. Since the PersonalAgent is the only instance having access to the user’s
profile, it ensures user data privacy.

The PersonalAgent is assigned to a user during the login procedure. It controls, via a dedi-
cated DeviceAgent, the complete interaction between its user and the CHIL system: it knows
what front-end devices its master has access to, how it can best receive or send information to
and from its master and what input and notification types its master prefers. Furthermore, the
PersonalAgent has access to the Situation Model through the SituationWatchingAgent. Sup-
porting both requests and subscriptions the SituationWatchingAgent can permanently update
a PersonalAgent about its master’s current context (location, activity, state of the environ-
ment) and the availability of the various devices in a dynamically changing situation. Based
on the static data of the user profile and the dynamic context information, the PersonalAgent

123

Auton Agent Multi-Agent Syst

handles user input and connection and notification requests to its master in the best way and
with the most appropriate media possible.

The Connector Service described in Sect. 4.3, for instance, adaptively handles incoming
calls on a cell phone based on the callee’s user profile and current situation. In his profile
a user can specify if a call or notification should be put through or be intercepted by the
Connector Service depending on both the social relationship between caller and callee and
different groups of activities. For example, a person in the CHIL environment might opt
for accepting calls from a VIP (e.g. his boss) but declining calls from a friend while in a
meeting-like situation.

3.10 Qualitative advantages of the CHIL agent framework

The benefits of the CHIL Agent Framework are manifold. On the one hand, the architec-
ture undertakes a wide range of tedious tasks, easing the deployment of new services, and
on the other hand it provides a transparent layer to the developer in terms of information
retrieval. It offers high flexibility, scalability and reusability and it facilitates the integration
of components at different levels, like

– Services,
– Perceptual Components,
– Sensors and Actuators, and
– User Interfaces.

Particularly the plug-in mechanism for agent behaviors, described in Sect. 3.4, constitutes
a powerful technique for the development, test, integration, configuration and deployment
of new services and components. Developers may create new agents and behaviors and use
this mechanism for easy behavior integration and agent configuration, thus facilitating and
accelerating the process of development and testing. They may benefit from the reusability
feature of the agent framework by including own behaviors in existing agents in order to
use the functionality of these agents. And they may profit from the flexible configuration
facility, allocate behaviors to different agents, turn behaviors on and off and even turn com-
plete services on and off. This mechanism not only provides a facility for the implementation
of services in handlers by keeping the agents service-independent, but also facilitates the
integration of heterogenous components and ubiquitous services, and establishes a basis for
a generic architecture which can be used across developers of different services, all of them
major goals which have been addressed in the introduction of Sect. 3. Additionally, detailed
guidelines for service integrators are available, which help service developers to integrate
their services into the CHIL architecture framework.

Another important quality factor is the use of an ontology based agent communication,
described in Sect. 3.2. Elevating the collaboration of components to a semantic level not only
augments the robustness of the system in terms of mutual understanding of internal com-
ponents, but also reduces the error-proneness of integrating new components and enhances
the interoperability with external systems in a significant manner. This approach both aug-
ments the integration of new services and devices and meets the goal of co-existing services
interfacing with each other, as addressed in Sect. 3.

One of the major quality objectives was to provide human-centric services interfacing
with humans in an unobtrusive way. This goal has been achieved by the concept of per-
sonal agents acting as personal butlers, which not only react on explicit user requests, but
also observe human needs and proactively provide appropriate services, based on user

123

Auton Agent Multi-Agent Syst

profiles which contain administrative and personal data. This has been described in Sect.
3.9. Furthermore, suitability and user friendliness of provided services are enhanced by the
facility of using different devices like notebooks, PDAs and smartphones, realized by special
device agents which closely communicate with the user’s personal agent, as described in
Sect. 3.6.

Tolerating both service and hardware failures, as indicated in the introduction of Sect. 3, is
performed by stateless and stateful agent handling based on the object-relational persistence
service Hibernate and the NIST Smart Flow middleware, described in Sect. 3.3. The quality
of the CHIL Agent Framework is also improved by a centralized information repository
and the interconnection of light-weight smart spaces to the main smart space, both issues
adressed in the introduction of Sect. 3. The former one is realized by a knowledge base, which
is managed by two specialized agents. It services requests and handles registration of any
component as described in Sect. 3.7. The latter one has been implemented as smart satellite
spaces and has been described in Sect. 3.8.

As a manifestation of the fact that this framework facilitates the development and deploy-
ment of services, we present in the following section four user-centric services, all of which
have been developed using this framework.

4 Services

The architectural framework has been utilized for implementing several non-intrusive appli-
cations. In the following, four example services are introduced, namely the Memory Jog
Service, the Surveillance Service, the Connector Service and the Travel Service. Those pro-
totype services were developed by individual teams at different locations with diverse system
set-ups.

4.1 The Memory Jog

The Memory Jog Service is a pervasive application which aims at providing non-obtrusive
assistance to users in smart spaces, during events such as meetings, lectures or presentations,
by supporting participant-participant interaction [39], while observing their functional roles
[3]. It exploits the whole range of the underlying sensor, actuator and context-acquisition
infrastructure to provide the required assistance to the participants. It provides preferred fea-
tures for events, such as event tracking, intelligent meeting recording [2], private messaging
using text or audio means, person and speaker tracking, intelligent display of information as
well as providing a summary of events during a person’s absence. All these features are ade-
quately ‘packaged’ in a flexible and well-designed Graphical User Interface (Fig. 7), which
can be adapted to the user’s terminal equipment, e.g. a desktop computer or a PDA device.
Moreover, these services are transparent, without intruding and interrupting the event and
creating distractions. The Memory Jog Service is designed as an agent-member of the agent
tier exploiting the benefits of our multi-agent structure. Its features, which are either initiated
by the user, or are triggered non-intrusively and manifested during the evolution of the event
are:

– Agenda tracking: The Memory Jog follows the meeting agenda during the evolution of
the event, provides information regarding the presenter and the subject under discussion,
and enables the user to search for past similar discussions.

123

Auton Agent Multi-Agent Syst

– Intelligent meeting recording: The Memory Jog can determine the optimal view of a
speaker and store this video stream instead of storing the whole amount of video streams
from all cameras. Moreover, this stream is forwarded to the external participants which
can view a live view of the actual event.

– Remote participation: The Memory Jog fully exploits the capabilities of the software
architecture for remote and mobile participants. Users can interact and participate in the
event by logging in either using their PDAs, Smartphones or by their Laptops using a
simple webcam and a microphone.

– Database/knowledge base search: By using the Memory Jog, the user can query the
databases and knowledge bases which accompany the Memory Jog Service and get infor-
mation regarding a user’s biography, the agenda of previous meetings, etc.

– Private messaging (audio, text): The graphical user interface can significantly assist the
user in the cases when he/she wants to send a private message to individuals in the room.
Moreover, external participants can use the Targeted Audio device [35] which can deliver
highly targeted beams of sound to any location of the smart space.

– Summary of missed events: The graphical user interface provides the user in a non-
obtrusive manner with a summary of contextual events which he may have missed during
a period of absence. This information is visualized to the user as a timeline of events
which show the alteration of events during this period. The user can later see the video
of these events, as it will be stored using the Intelligent Meeting Recording feature of the
Memory Jog, which was described previously.

4.2 The surveillance service

A smaller-scale ubiquitous service exploiting the benefits of this software architecture, is
the Surveillance Service. As before, this service is managed by a dedicated agent-member
of the agent society which is gathering all the context originating from the underlying set
of context-acquisition feeds. The result is processed and is presented graphically in a well
designed GUI.

The purpose of the Surveillance Service is to monitor in-door environments about human
activity and trigger alarms based on a set of rules which signify a ‘hot zone’. In our implemen-
tation, we assume that unidentified individuals are not allowed to be in a specific location.
Tracking individuals is done by the body tracker component, whereas the person identifica-
tion is done by the corresponding component. Each action is logged to a database for later
replaying but it can be used in real-time as well.

The Surveillance Service is a good example of exploiting the benefits of an autonomic
system. The service is responsible for coordinating a number of different camera sensors and,
according to their status, to make intelligent decisions based on the events that take place in
the smart space, e.g. to call security because there is a person near a hot spot. However, this
is only one part of the service logic, as these decisions and events that have been identified,
are sent to other agents as well, in our case to database controlling agents for logging. Should
a camera fail, the service bases its decisions on the other cameras, disregarding the output of
the failed one, which may introduce errors in judgment. As these decisions have been made,
they are forwarded to the database agent which logs them to a relational database. Should
this agent fail, the service will become aware of that as it did not receive an acknowledgment
for the latest request. It stores all events and decisions and waits for the agent to regenerate.
As soon as the agent is operating again, it informs the service about its status, and the process
is repeated.

123

Auton Agent Multi-Agent Syst

4.3 The connector service

The Connector Service addresses a particular type of social situation between two (or more)
people by means of communication devices. Crucial issues in this context are the availabil-
ity of the callee, and the appropriateness of the time and place for the call to be accepted.
What if a rejected phone call was of unexpected importance? What if the call is closely
related to the current task? At the same time, on the callers side, it can become quite annoy-
ing to lose time playing phone tag trying to reach others, asking third persons about the
whereabouts of the original contactee, and not being available oneself for returning calls
[38].

The Connector Service is a context-aware application that intelligently connects people.
It manages communication links (connections and notifications) and handles connection
and notification requests, either simple requests (e.g. a meeting participant wants to talk to
another) or more complex requests (e.g. a meeting participant wants to notify all the other
participants). It maintains an awareness of its users’ activities, preoccupations and social
relationships and mediates a proper connection at the right time between them. It adapts the
behavior of the contactee’s device automatically in order to avoid inappropriate interruptions.
Moreover, the Connector Service can use any available output device to deliver information
to users in the most unobtrusive way possible.

The corresponding ConnectorAgent mediates between various PersonalAgents and
handles communications affecting two or more PersonalAgents (PersonalAgents may com-
municate with each other directly if there is only a direct communication between two
PersonalAgents). This includes that the Connector Service stores all pending connections
and finds a suitable point of time for these connections to take place.

In order to describe the complex behavior of the Connector Service, we consider a sample
scenario described in detail in [9]. In this scenario a meeting is scheduled in a CHIL smart
room, where most of the meeting participants are already present. Another participant (Jeff)
realizes that he will be late for the meeting and wants to inform the other participants of his
delay. With the help of the Connector Service Jeff is able to reach all persons affected by his
delay with only one virtual call.

Jeff uses his smartphone (Fig. 8, left) to trigger his PersonalAgent (via the smartphone’s
DeviceAgent representing his phone) which informs the AgentManager of the delay. The
AgentManager asks the MeetingAgent for details about the meeting, e.g. the room where
the meeting is held and a list of all scheduled meeting participants. With this information
the AgentManager requests the ConnectorAgent to deliver Jeff’s message to the attendees.
Instead of contacting all attendees individually, the ConnectorAgent retrieves a list of partic-
ipants already present in the meeting room in order to notify them all at once. Information
about the current attendance is kept in the situation model and is accessible through the
SituationWatchingAgent. Notification of the present attendees is done via the SmartRoom-
Agent, which is aware of the output devices available in the meeting room, e.g. central video
projector, loud speakers and targeted audio. Since the meeting has not started yet, the Smart-
RoomAgent chooses to display Jeff’s delay message via the central video projector. For those
participants who have not yet arrived in the meeting room, the ConnectorAgent informs their
PersonalAgents which in turn may choose an appropriate output medium for their masters
(e.g. notebook, PDA, cell phone, etc.) according to their current situation and user profile.
Finally, Jeff is informed by his PersonalAgent that his message was delivered to all meeting
participants.

123

Auton Agent Multi-Agent Syst

4.4 The travel service

The Travel Service is another example of a ubiquitous service realized by a member of the
CHIL agent society. It assists travelers with planning and re-arranging their itineraries. This
service can either be evoked directly by the user through one of his personal devices (cf. Fig.
8, right) or act proactively. An example scenario has been implemented which demonstrates
close cooperation between the Connector Service and the Travel Service.

This scenario follows up the Connector Service scenario where one participant (Jeff) is
late for a meeting. His presence is considered to be crucial for the outcome of the meeting.
Hence, the beginning of the meeting is delayed until Jeff arrives. All meeting participants are
known to the CHIL system and have CHIL-enabled personal devices, i.e. notebooks, PDAs
or smart phones with a CHIL software client. Most of the participants have tight itineraries
with flights or trains leaving shortly after the scheduled end of the meeting. Their planned
itineraries are known to their respective PersonalAgents.

Triggered by Jeff’s delay message each PersonalAgent determines whether the delay is
likely to let its master miss his return connection. If this is the case the PersonalAgent prov-
idently initiates a search for alternative connections. It provides the TravelAgent with the
necessary information including user preferences, e.g. if its master prefers to fly or take a
train. The TravelAgent processes the request by retrieving information from semantic web
services of railway operators, airlines and travel agencies. The current implementation uses

Fig. 8 Smartphone client to access multiple CHIL services

123

Auton Agent Multi-Agent Syst

simulated semantic web services due to a lack of suitable services. However, once such
services become available they can be integrated without difficulty.

Eventually, the Travel Service sends a list of possible connections to the PersonalAgent
which notifies its user. As with all CHIL services, notifications are done as unobtrusively as
possible. The PersonalAgent chooses the most appropriate way to inform its master taking
into account his current environmental situation (e.g. “in meeting”), the currently available
output devices (i.e. personal devices like smart phones, PDAs, notebooks and output devices
of the smart room, e.g. targeted audio or steerable video projector) and his preferred way of
notification (e.g. pop-up box or voice message). The user can then decide whether he wants
to change his itinerary.

A possible outcome of the search could also be that the PersonalAgent informs its master
that he should leave the meeting as planned, since there was no suitable alternative itinerary.
In case the CHIL user is not satisfied with any of the proposed itineraries and wants to look
up travel connections himself, he can use his CHIL-enabled personal device to do so. Fig. 8,
right, shows the query mask on a smart phone. An equivalent user front end is available for
notebooks.

4.5 Summary

On the one hand, the described prototype services indicate the variety of possible applications
supported by the CHIL Framework. It is not only capable of hosting individual services but
also facilitates the collaboration of services on a semantic level as shown using the example
of the Connector/Travel Service.

On the other hand, by implementing those services we have demonstrated the suitability
of the agent framework for developing context-aware cooperating applications. Specifically,
implementations have shown that it is capable of interfacing with the situation modeling
logic, as well as invoking basic services. The full value of the framework is demonstrated
by plugging multiple services into the same instance of the framework based on the same
underlying infrastructure for sensing and context-awareness.

5 Performance evaluation

In this section we discuss the performance of the CHIL Agent Framework in terms of commu-
nication, processing overhead, and agent autonomy performance. These results were obtained
during a series of executions of the Memory Jog scenario, which includes a wide range of
agents with different capabilities and tasks, such as device controllers, database managers,
sensor coordination agents etc. The setup of our smart space can be seen in [47], where we
also show the configuration of our sensing and actuating equipment. Our network consisted
of seven computers,1 six cameras, four inverse-T shaped microphone arrays, one MarkIII
linear microphone array, one projector and one targeted audio device, as well as one database
and one knowledge base for information storing. The agents controlling each sensor and
actuator were executed on the host to which the device was allocated, whereas the rest of the
agents were spread across all available computers. Finally, the knowledge base repository
was instantiated on a different computer than the one with the database.

Our initial investigation lies in the performance of this framework when it comes to pro-
viding context-aware services in smart spaces; the results are shown in Fig. 9. In Fig. 9a,

1 All computers are identical dual Xeon at 2.8GHz, with 2.0 GB RAM.

123

Auton Agent Multi-Agent Syst

Fig. 9 The agent booting delay, and the interagent communication delay in the CHIL Framework in the case
of the Memory Jog scenario

we display the amount of time needed until an agent member of the CHIL society joins the
framework. This initial delay is caused by the registration procedure to the CHILAgentMan-
ager, which acts as the main directory lookup service of the CHIL Framework, the possible
queries that the agent asks for existing agent-members, and other initial steps which are spec-
ified by the service logic. These results were obtained by logging the amount of time needed
by 721 agents (of different nature such as situation modeling agents, database agents etc.),
throughout the scenarios covered by the Memory Jog service on various occasions. So these
results reflect a very typical scenario of services that have been designed and implemented
using this framework. In general, these results are satisfactory if we consider the fact that
each agent in the Memory Jog scenario performs a large number of tasks. For instance this
applies to agents which control cameras and set up each sensor prior to the commencement
of the event, or interfacing with the knowledge base and retrieving information about the
current smart space which is a highly time consuming process, etc. In these scenarios which
involve human-centric services, such a performance has been experienced to be acceptable,
in comparison with scenarios which would include very frequent agent interaction as for
example in cases of simulations.

The communication overhead introduced by the CHIL Framework, as illustrated in Fig. 9b,
is calculated from the time of the message transmission to the time that the receptor has iden-
tified the type of the message and responded with an acknowledgement. As in Fig. 9a, these
results are also based on a typical run of the Memory Jog, a scenario which includes a wide
variety of message content (simple text, ontology entries, lists of ontology entries etc.), and
we consider it as a representative scenario to base our conclusions. The mean overhead delay
stays below 1,000 ms; however, rare cases of delays which are even more than 2,000 ms have
been recorded. Upon reception of a message, the agent decodes the message based on a list
of message types that it accepts. This message, however, may contain additional data which
needs to be decoded as well. These procedures do not require significant processing over-
head. The results that are shown in Fig. 9a reflect the communication delay as experienced
during the Memory Jog service, and should not be compared with the communication per-
formance of JADE. For example, acknowledging a message could involve the triggering of a
camera sensor to be activated, or the querying of a database for some information, etc, actions
which are time-consuming. These results are to be considered as the communication delay

123

Auton Agent Multi-Agent Syst

Fig. 10 Memory requirements and instantiation duration for the CHIL and JADE Frameworks

of the overall service, as they take into consideration all actions that the agents make upon
reception of a message. However, the underlying communication mechanism is the same as
in the JADE Framework, as we are not interfering with it. In the scope of the context-aware
ubiquitous services that we explore, such a performance has proved to be quite effective in
not being distractive to the users.

Despite the fact that the CHIL Agent Framework is significantly more complicated than
its foundation framework, JADE, both the amount of time needed to instantiate 1,000 agents,
and the required memory remains at a reasonable level, as seen in Fig. 10. To measure these,
we developed a “dummy” agent, identical in both cases, extending the base class for each
framework (i.e. the CHILAgent and the Agent for the CHIL and JADE Framework, respec-
tively) and logged the amount of time until the registration was completed, and the memory
requirements for each case.

The initialization time was measured from the moment that each agent requested the
CHILAgentManager to register the agent, until the moment that the CHILAgentManager
completed the registration. Regarding the memory consumption, this was measured using
the java.lang.Runtime.totalMemory() and the java.lang.Runtime.fre-
eMemory() methods and computing the difference between their results. The basic reason
for the differences between the JADE and the CHIL agents is the fact that the basic JADE
Agent performs no tasks during instantiation, but simply joins itself to the JADE Frame-
work. In contrast to this approach, the CHIL agents perform a number of tasks which are
both memory and time consuming. These tasks are finding the CHILAgentManager, initiat-
ing the registration sequence by communicating with the CHILAgentManager, setting up the
individual logging preferences for the agent, specifying the CHIL specific ontology commu-
nication mechanisms and instantiate a behavior for handling CHILEvents (events which are
posted by agents when an action is to be taken). The rate of the memory increase in the CHIL
Framework case is considered to be associated with the large number of data structures that
the CHILAgentManager maintains, which are not given a predefined size. As more agents are
injected into the system, these data structures are adapted and take up more space in memory.
This rate, though larger than the JADE case, still increases in a near linear fashion, at least
this is seen until 1000 agents have been initialized. Finally, the CHILAgentManager agent
on average, requires 600–700 ms to be instantiated, a time which is not too surprising as it

123

Auton Agent Multi-Agent Syst

Fig. 11 Delay distribution for the recovery mechanisms as designed in the CHIL Agent Framework

undertakes additional tasks such as to take over the registration and deregistration process
for each new agent, to assist in the searching for agents etc. This agent is only instantiated
once.

Both memory and time requirements for the CHIL Agent Framework are higher than
JADE’s, something that is expected as the CHIL Agent is a significantly more complicated
framework. In terms of the initialization process, this increases linearly in relation to the
number of agents in the platform. Let us elaborate on these results, which were taken by an
automated script that instantiated a JADE and CHIL agent every second. As the number of
agents increases, the number of messages that are present in the same processor increase so
the time to complete the registration is certainly affected. The memory requirements increase
in the same manner up to a certain point (700–750 agents), and above that the rate is slightly
increased. We claim that this is due to the recalibration of internal data structures such as
hashmaps or arraylists, that have been assigned an initial value, but as the number of agents
increases, these do increase as well but in a not standard fashion.

In the last figure (Fig. 11) we show the effect of agent restarting by the AutonomicAgent-
Manager agent. This agent restarts a dead agent as soon as it realizes its death. The measured
time is calculated from the moment of restarting until the moment of re-registering to the
CHIL Framework as an active agent. This amount of time is highly related to the regeneration
type that the corresponding agent has requested during registration, types which have been
described in detail in Sect. 3.3. In the case of stateful handling, this is the amount of time
until the last object is retrieved from the database.

6 Conclusions

In this paper we presented a multi-agent architecture for facilitating the design, develop-
ment, management and maintenance of sophisticated context-aware ubiquitous computing
services. We illustrated how this framework can coordinate a variety of sensor equipment
and generate elementary context. These context cues can later be fused by complex situation
modeling components, which are able to recognize complex situations that can be used to
model human interaction.

The main benefits of the approach presented result from universal interfaces to different
perceptual components (e.g. visual and audio trackers) and the scalability and reliability of

123

Auton Agent Multi-Agent Syst

the architecture due to stable adding and removing of agents to or from the community of
acting agents. The flood of data generated by a large amount of audio, video and other sensors
(e. g. RFID) can be reduced to a manageable amount of situations and contexts to provide
adequate input to different services.

We presented how different services are able to interoperate on a semantic level. The
benefits of interoperation will become more visible as soon as a larger set of services is to be
implemented. Useful services in this context could be an automatic minutes taking service (a
rudimentary version has already been implemented), graphical seating arrangement display
(dynamically changing during a meeting and seen from the perspective of each user in the
scene) and coordinating services in a multi meeting scenario.

Our initial results are encouraging in terms of agent communication and failure handling,
having an increased requirement in memory and initialization time as expected. However,
these have been experienced in highly populated scenarios which are not under study. In addi-
tion to that, the CHIL Agent Framework is able to handle issues of hardware and software
failures in a transparent fashion, introducing minimal distraction to the users during an inter-
acting event. Furthermore, the option of plugging multiple services in the framework enables
each service designer to focus on individual components rather than requiring knowledge of
the whole software and hardware architecture.

In the future we will work on automatic code generation for behavior skeletons based on
the agent actions and their associated concepts defined in the ontology. This will simplify
the combination of different behaviors and will make it possible to check their consistency.
Moreover, learning capabilities will be addressed to adapt the personal agent’s reaction to
individual needs and preferences for each user.

Acknowledgments This work is part of the FP6 CHIL project (FP6-506909), partially funded by the Euro-
pean Commission under the Information Society Technology (IST) program. The authors acknowledge valu-
able help and contributions from all partners of the project, especially of partners participating in WP2 which
defined the software architecture of the project.

References

1. Altmann, J., Gruber, F., Klug, L., Stockner, W., & Weippl, E. (2001). Using mobile agents in real
world: A survey and evaluation of agent platforms. In 2nd international workshop on infrastructure
for agents, MAS, and scalable MAS at the 5th international conference on autonomous agents (pp.
33–39). New York: ACM Press.

2. Azodolmolky, S., Dimakis, N., Mylonakis, V., Souretis, G., Soldatos, J., Pnevmatikakis, A., et al.
(2005). Middleware for in-door ambient intelligence: The PolyOmaton system. In 4th IFIP TC-6
networking conference, 2nd next generation networking middleware workshop (NGNM) (pp. 33–39).
Waterloo, Canada.

3. Benne, K., & Sheats, P. (1948). Functional roles of group members. Journal of Social Issues, 4, 41–49.
4. Bordini R. H., Hübner, J. F., & Vieira, R. (2005). Jason and the golden fleece of agent-oriented

programming. In Multi-agent programming (pp. 3–37). US: Springer. doi:10.1007/0-387-26350-0_1.
5. CHIL: Computers in the Human Interaction Loop. At http://chil.server.de. FP6 IST-IP506909.
6. Coen M., Phillips B., Warshawsky N., Weisman L., Peters S., & Finin P. (1999). Meeting the

computational needs of intelligent environments: The metaglue system. In 1st international workshop
on managing interactions in smart environments (pp. 201–212).

7. Cohen, P. R., Cheyer, A. J., Wang, M., & Baeg, S. C. (1994). An open agent architecture. In O. Etzioni
(Ed.), Proceedings of the AAAI spring symposium series on software agents (pp. 1–8). Stanford, CA:
American Association for Artificial Intelligence.

8. Crowley, J. L. (2003). Context driven observation of human activity. Lecture Notes in Computer
Science, 2875, 101–118.

9. Danninger, M., Flaherty, G., Bernardin, K., Ekenel, H. K., Köhler, T., Malkin, R., et al. (2005). The
connector: Facilitating context-aware communication. In ICMI ’05: Proceedings of the 7th international

123

http://dx.doi.org/10.1007/0-387-26350-0_1
http://chil.server.de

Auton Agent Multi-Agent Syst

conference on multimodal interfaces (pp. 69–75). New York, NY: ACM Press. doi:10.1145/1088463.
1088478.

10. Dastani, M. (2008). 2APL: A practical agent programming language. Autonomous Agents and
Multi-Agent Systems, 16(3), 214–248. doi:10.1007/s10458-008-9036-y.

11. Dertouzos, M. (1999). The future of computing. Scientific American, 281(2), 52–63.
12. Dey, A., Salber, D., & Abowd, G. (2001). A conceptual framework and a toolkit for supporting the

rapid prototyping of context-aware applications. Human Computer Interaction, 16, 97–166.
13. Dey, A. K. (2001). Understanding and using context. Personal Ubiquitous Compututing Jour-

nal, 5(1), 4–7. doi:10.1007/s007790170019.
14. Dimakis, N., Mylonakis, V., Soldatos, J., & Polymenakos, L. (2006). Reaching outside the smart space:

The memory jog gateway. In 15th international conference in computing (CIC’06) (pp. 412–420).
Mexico City: IEEE Computer Society. doi:10.1109/CIC.2006.57.

15. Dimakis, N., Soldatos, J., Polymenakos, L., Schenk, M., Pfirrmann, U., & Bürkle, A. (2006). Perceptive
middleware and intelligent agents enhancing service autonomy in smart spaces. In IEEE/WIC/ACM
international conference on web intelligence and intelligent agent technology (pp. 276–283). Los
Alamitos, CA: IEEE Computer Society. doi:10.1109/IAT.2006.98.

16. Dimakis, N., Soldatos, J. K., Polymenakos, L., Fleury, P., Cuřín, J., & Kleindienst, J. (2008). Integrated
development of context-aware applications in smart spaces. IEEE Pervasive Computing, 7(4), 71–79.
doi:10.1109/MPRV.2008.75.

17. Faci N., Guessoum Z., & Marin O. (2006). Dimax: A fault-tolerant multi-agent platform. In SEL-
MAS ’06: Proceedings of the 2006 international workshop on software engineering for large-scale
multi-agent systems (pp. 13–20). New York, NY: ACM Press. doi:10.1145/1138063.1138067.

18. FIPA. The Foundation for Intelligent Physical Agents. At http://www.fipa.org.
19. Garlan, D., Siewiorek, D., Smailagic, A., & Steenkiste, P. (2002). Project aura: Towards distraction-free

pervasive computing. IEEE Pervasive Computing, 21(2), 22–31.
20. Hansmann, U., Merk, L., Nicklous, M. S., & Stober, T. (2003). Pervasive computing: The mobile

world (Springer professional computing). New York: Springer.
21. Helsinger, A., Thome, M., & Wright, T. (2004). Cougaar: A scalable, distributed multi-agent architecture.

In IEEE international conference on systems, man and cybernetics (pp. 1910–1917).
22. Hibernate. Relational persistence for java. At http://www.hibernate.org.
23. Horling, B., Lesser, V., Vincent, R., & Wagner, T. (2006). The soft real-time agent control architec-

ture. Autonomous Agents and Multi-Agent Systems, 12(1), 35–92.
24. iBATIS. IBATIS Data Mapping Framework. At http://ibatis.apache.org/.
25. Islam, N., & Fayad, M. (2003). Toward ubiquitous acceptance of ubiquitous computing. Communications

of the ACM, 46(2), 89–92. doi:10.1145/606272.606302.
26. JADE. Java Agent Development Environment. At http://jade.tilab.com.
27. Jadex. BDI Agent System. At http://vsis-www.inormatik.unihamburg.de/projects/jadex.
28. Jason. Jason: A Java-based interpreter for an extended version of agent speak. At http://jason.

sourceforge.net/.
29. Kleindienst, J., Curin, J., & Fleury, P. (2007). Reference architecture for multi-modal perceptual

systems: Tooling for application development. In Intelligent environments, 2007. IE 07. 3rd IET
international conference on (pp. 361–368). doi:10.1049/cp:20070393.

30. Kumar, S., Cohen, P., & Levesque, H. J. (2000). The adaptive agent architecture: Achieving fault-tol-
erance using persistent broker teams. In 4th international conference on multi-agent systems (ICMAS
2000) (pp. 159–166).

31. Kumar, S., & Cohen, P. R. (2000). Towards a fault-tolerant multi-agent system architecture. In AGENTS
’00: Proceedings of the fourth international conference on autonomous agents (pp. 459–466). New
York, NY: ACM Press. doi:10.1145/336595.337570.

32. Martin, D., Cheyer, A., & Moran, D. (1999). The open agent architecture: A framework for
building distributed software systems. Applied Artificial Intelligence, 13(12), 91–128. doi:10.1080/
088395199117504.

33. Minar, N., Gray, M., Roup, O., Raffi, K., & Maes, P. (2004). Hive: Distributed agents for networking
things. IEEE Concurrency, 8, 24–33.

34. Olszewski, D., & Linhard, K. (2006). Highly directional multi-beam audio loudspeaker. In Interspeech
2006

35. Olszewski, D., Prasetyo, F., & Linhard, K. (2005). Steerable highly directional audio beam loudspeaker.
In Interspeech 2005 (pp. 137–140).

36. OWL. Web ontology language (owl). At http://www.w3.org/2004/OWL
37. Pandis, I., Soldatos, J., Paar, A., Reuter, J., Carras, M., & Polymenakos, L. (2005). An ontology-

based framework for dynamic resource management in ubiquitous computing environments. In 2nd

123

http://dx.doi.org/10.1145/1088463.1088478
http://dx.doi.org/10.1145/1088463.1088478
http://dx.doi.org/10.1007/s10458-008-9036-y
http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1109/CIC.2006.57
http://dx.doi.org/10.1109/IAT.2006.98
http://dx.doi.org/10.1109/MPRV.2008.75
http://dx.doi.org/10.1145/1138063.1138067
http://www.fipa.org
http://www.hibernate.org
http://ibatis.apache.org/
http://dx.doi.org/10.1145/606272.606302
http://jade.tilab.com
http://vsis-www.inormatik.unihamburg.de/projects/jadex
http://jason.sourceforge.net/
http://jason.sourceforge.net/
http://dx.doi.org/10.1049/cp:20070393
http://dx.doi.org/10.1145/336595.337570
http://dx.doi.org/10.1080/088395199117504
http://dx.doi.org/10.1080/088395199117504
http://www.w3.org/2004/OWL

Auton Agent Multi-Agent Syst

international conference on embedded software and systems (pp. 195–203). doi:10.1109/ICESS.2005.
29.

38. Pianesi, F., & Terken, J. (2009). Computers in the human interaction Loop, chap. User-centered
design of CHIL services: Introduction (pp. 179–186). Human-computer interaction series. London:
Springer. doi:10.1007/978-1-84882-054-8_16.

39. Pianesi, F., Zancanaro, M., Falcon, V., & Not, E. (2006). Towards supporting group dynamics. In
Proceedings of the artificial intelligence applications and innovations (AIAI2006) (pp. 302–311).

40. Pokahr, A., Braubach, L., & Lamersdorf, W. (2005). Jadex: A BDI reasoning engine. In J. D. R. Bordini,
M. Dastani, & A. E. F. Seghrouchni (Eds.), Multi-agent programming (pp. 149–174). USA: Springer
Science+Business Media Inc.

41. Pynadath, D., Tambe, M., Arens, Y., Chalupsky, H., Gil, Y., Knoblock, C., et al. (2000). Electric
elves: Immersing an agent organization in a human organization. In Proceedings of the AAAI fall
symposium on socially intelligent agents—The human in the Loop. Menlo Park, CA: The AAAI Press.

42. Rao, A.S. (1996). AgentSpeak(L): BDI agents speak out in a logical computable language. In R.
van Hoe (Ed.), Seventh European workshop on modelling autonomous agents in a multi-agent world,
Lecture notes in artificial intelligence (Vol. 1038, pp. 42–55). Berlin: Springer Verlag.

43. Saif, U., Pham, H., Paluska, J. M., Waterman, J., Terman, C., & Ward, S. (2003). A case for
goal-oriented programming semantics. In 5th annual conference on ubiquitous computing (UbiComp
’03) (pp. 74–83).

44. Scerri, P., Pynadath, D., & Tambe, M. (2001). Adjustable autonomy in real-world multi-agent envi-
ronments. In AGENTS ’01: Proceedings of the fifth international conference on autonomous agents
(pp. 300–307). New York, NY: ACM. doi:10.1145/375735.376314.

45. Shi, Y., Xie, W., Xu, G., Shi, R., Chen, E., & Mao, Y., et al. (2003). The smart classroom: Merging
technologies for seamless tele-education. IEEE Pervasive Computing, 2(2), 47–55. doi:10.1109/MPRV.
2003.1203753.

46. Šišlák, D., Rehák, M., Pěchouček, M., Rollo, M., & Pavlíček, D. (2005). A-globe: Agent development
platform with inaccessibility and mobility support. In R. Unland, M. Klusch, & M. Calisti (Eds.), Software
agent-based applications, platforms and development kits (pp. 21–46). Basel: Birkhauser Verlag.

47. Soldatos, J., Dimakis, N., Stamatis, K., & Polymenakos, L. (2007). A breadboard architecture for
pervasive context-aware services in smart spaces: Middleware components and prototype applica-
tions. Personal and Ubiquitous Computing Journal, 11(2), 193–212. doi:10.1007/s00779-006-0102-7.

48. Soldatos, J., Pandis, I., Stamatis, K., Polymenakos, L., & Crowley, J. L. (2007). Agent based middleware
infrastructure for autonomous context-aware computing services. Computer Communications Magazine,
Special Issue on Emerging Middleware for Next Generation Networks, 30(3), 577–591. doi:10.1016/
j.comcom.2005.11.018.

49. Soldatos, J., Stamatis, K., Azodolmolky, S., Pandis, I., & Polymenakos, L. (2007). Semantic web
technologies for ubiquitous computing resource management in smart spaces. International Journal
of Web Engineering and Technology, 3(4), 353–373. doi:10.1504/IJWET.2007.014438.

50. Stanford, V. (2002). Pervasive computing goes to work: Interfacing to the enterprise. IEEE Pervasive
Computing, 01(3), 6–12. doi:10.1109/MPRV.2002.1037716.

51. Sycara, K., Paolucci, M., Velsen, M. V., & Giampapa, J. A. (2003). The RETSINA MAS infrastruc-
ture. Autonomous Agents and Multi-Agent Systems, 7(1/2), 29–48. doi:10.1023/A:1024172719965.

52. Tambe M., Min Shen W., Mataric M., Pynadath D. V., Goldberg D., Modi P. J., et al. (1999). Teamwork
in cyberspace: Using TEAMCORE to make agents team-ready. In Proceedings of the AAAI spring
symposium on agents in cyberspace (pp. 136–141). Menlo Park, CA: The AAAI Press.

53. TopLink. At http://www.oracle.com/technology/products/ias/toplink/index.html.
54. Torque. At http://db.apache.org/torque/.
55. UltraLog. The ultralog project. At http://ultralog.net.
56. Weiser, M. (1991). The computer for the 21st century. Scientific American, 9(9), 94–104.
57. Zorzo, A. F., & Meneguzzi, F. R. (2005). An agent model for fault-tolerant systems. In SAC ’05:

Proceedings of the 2005 ACM symposium on Applied computing (pp. 60–65). New York, NY: ACM
Press. doi:10.1145/1066677.1066696.

123

http://dx.doi.org/10.1109/ICESS.2005.29
http://dx.doi.org/10.1109/ICESS.2005.29
http://dx.doi.org/10.1007/978-1-84882-054-8_16
http://dx.doi.org/10.1145/375735.376314
http://dx.doi.org/10.1109/MPRV.2003.1203753
http://dx.doi.org/10.1109/MPRV.2003.1203753
http://dx.doi.org/10.1007/s00779-006-0102-7
http://dx.doi.org/10.1016/j.comcom.2005.11.018
http://dx.doi.org/10.1016/j.comcom.2005.11.018
http://dx.doi.org/10.1504/IJWET.2007.014438
http://dx.doi.org/10.1109/MPRV.2002.1037716
http://dx.doi.org/10.1023/A:1024172719965
http://www.oracle.com/technology/products/ias/toplink/index.html
http://db.apache.org/torque/
http://ultralog.net
http://dx.doi.org/10.1145/1066677.1066696

	Agent-based architectural framework enhancing configurability, autonomy and scalability of context-aware pervasive services
	Abstract
	1 Introduction
	2 Related work
	3 The CHIL agent framework
	3.1 The CHIL reference architecture
	3.2 Intelligent messaging
	3.3 Autonomy
	3.4 Pluggable behaviors
	3.5 Pluggable services
	3.6 Device independence
	3.7 Directory service
	3.8 Satellite spaces
	3.9 Personalization
	3.10 Qualitative advantages of the CHIL agent framework

	4 Services
	4.1 The Memory Jog
	4.2 The surveillance service
	4.3 The connector service
	4.4 The travel service
	4.5 Summary

	5 Performance evaluation
	6 Conclusions
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

