Skip to main content
Log in

Cross-layers cascade in multiplex networks

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

The study of information cascade in multiplex networks, where agents are connected by using multiple linking types, has received increasing attention. Compared with the cascade in simplex networks, a noticeable characteristic of the cascade in multiplex networks is that information may be spread between multiple layers. In this study, we focus on the cross-layers cascade, which helps clarify two opposing opinions about the information cascade in multiplex networks: multiplexity can speed up or slow down information cascade. The linear threshold model is generalized into multiplex networks as conjoint agents become active, if the influences of active neighbors in any layer reach a predefined threshold. The preconditions and reasons for the slow-down and speed-up phenomena are discussed using four representative case studies and theoretical analyses. Next, analytical results are validated by using extensive simulations in which the multiplex networks are generated by random, small-world and scale-free network models. It is found that the slow-down phenomenon emerges due to the obstruction of cross-layers cascade which connects the distributed shortest path in multiple layers and the inhibitory effect of negative influence. Conversely, extra short paths or rapid spreading in one additional layer can facilitate the cascade process in existing networks, respectively. Extensive simulations also show that multiplex networks consisting of different network models are more competent for the cascade process compared with multiplex networks generated by a single network model. In conclusion, the concept of cross-layers cascade may elucidate the additional study of information spreading in multiplex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bikhchandani, S., Hirshleifer, D., & Welch, I. (1992). A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of Political Economy, 100(5), 992–1026.

    Article  Google Scholar 

  2. Watts, D. J. (2002). A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences of the United States of America, 99(9), 5766–5771.

    Article  MathSciNet  MATH  Google Scholar 

  3. Rogers, E. M. (1995). Diffusion of innovations (4th ed.). New York: Simon and Schuster.

    Google Scholar 

  4. Jiang, Y. & Ishida, T. (2007). A model for collective strategy diffusion in agent social law evolution. IJCAI’07: Proceeding of 20th international joint conference on artificial intelligence (pp. 1353–1358).

  5. Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 1194–1197.

    Article  Google Scholar 

  6. Jiang, Y., Hu, J., & Lin, D. (2011). Decision making of networked multiagent systems for interaction structures. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 41(6), 1107–1121.

    Article  Google Scholar 

  7. Jiang, Y. (2009). Concurrent collective strategy diffusion of multiagents: The spatial model and case study. IEEE Transactions on Systems, Man and Cybernetics-Part C, 39(4), 448–458.

    Article  Google Scholar 

  8. Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., & Setola, R. (2008). Modelling interdependent infrastructures using interacting dynamical models. International Journal of Critical Infrastructures, 4(1), 63–79.

    Article  Google Scholar 

  9. Yagan, O., Qian, D., Zhang, J., & Cochran, D. (2012). Optimal allocation of interconnecting links in cyber-physical systems: Interdependence, cascading failures, and robustness. IEEE Transactions on Parallel and Distributed Systems, 23(9), 1708–1720.

    Article  Google Scholar 

  10. Dezső, Z., & Barabási, A. L. (2002). Halting viruses in scale-free networks. Physical Review E, 65(5), 055103.

    Article  Google Scholar 

  11. Morris, R. G., & Barthelemy, M. (2012). Transport on coupled spatial networks. Physical Review Letters, 109(12), 128703.

    Article  Google Scholar 

  12. Granovetter, M. (1978). Threshold models of collective behavior. American Journal of Sociology, 83, 1420–1443.

    Article  Google Scholar 

  13. Kempe, D., Kleinberg, J., & Tardos, É. (2003). Maximizing the spread of influence through a social network. KDD’03: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 137-146). ACM Press.

  14. Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J. P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328(5980), 876–878.

    Article  MathSciNet  MATH  Google Scholar 

  15. Szell, M., Lambiotte, R., & Thurner, S. (2010). Multirelational organization of large-scale social networks in an online world. Proceedings of the National Academy of Sciences, 107(31), 13636–13641.

    Article  Google Scholar 

  16. Jiang, Y., & Jiang, J. C. (2014). Understanding social networks from a multiagent perspective. IEEE Transactions on Parallel and Distributed Systems, 25(10), 2743–2759.

    Article  Google Scholar 

  17. Li, Z., & Jiang, Y. (2014). Cross-layers cascade in multiplex networks. AAMAS’14: Proceedings of the 2014 international conference on autonomous agents and multi-agent systems (pp. 269-276). International Foundation for Autonomous Agents and Multiagent Systems.

  18. Yagan, O., Qian, D., Zhang, J., & Cochran, D. (2013). Conjoining speeds up information diffusion in overlaying social-physical networks. IEEE Journal on Selected Areas in Communications, 31(6), 1038–1048.

    Article  Google Scholar 

  19. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464(7291), 1025–1028.

    Article  Google Scholar 

  20. Gómez, S., Díaz-Guilera, A., Gómez-Gardeñes, J., Perez-Vicente, C. J., Moreno, Y., & Arenas, A. (2013). Diffusion dynamics on multiplex networks. Physical Review Letters, 110(2), 028701.

    Article  Google Scholar 

  21. Brummitt, C. D., Lee, K. M., & Goh, K. I. (2012). Multiplexity-facilitated cascades in networks. Physical Review E, 85(4), 045102.

    Article  Google Scholar 

  22. Karsai, M., Kivelä, M., Pan, R. K., Kaski, K., Kertész, J., Barabási, A. L., et al. (2011). Small but slow world: How network topology and burstiness slow down spreading. Physical Review E, 83(2), 025102.

    Article  Google Scholar 

  23. Miritello, G., Moro, E., & Lara, R. (2011). Dynamical strength of social ties in information spreading. Physical Review E, 83(4), 045102.

    Article  Google Scholar 

  24. Brockmann, D., Hufnagel, L., & Geisel, T. (2006). The scaling laws of human travel. Nature, 439(7075), 462–465.

    Article  Google Scholar 

  25. Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360–1380.

    Article  Google Scholar 

  26. Tang, S., Yuan, J., Mao, X., Li, X. Y., Chen, W., & Dai, G. (2011). Relationship classification in large scale online social networks and its impact on information propagation. INFOCOM’11: Proceeding of 30th IEEE international conference on computer communications (pp. 2291-2299). IEEE Press.

  27. Jiang, Y., & Jiang, J. C. (2015). Diffusion in social networks: A multiagent perspective. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(2), 198–213.

    Article  Google Scholar 

  28. Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic spreading in scale-free networks. Physical Review Letters, 86(14), 3200.

    Article  Google Scholar 

  29. Newman, M. E. (2002). Spread of epidemic disease on networks. Physical Review E, 66(1), 016128.

    Article  MathSciNet  Google Scholar 

  30. Salehi, M., Sharma, R., Marzolla, M., Montesi, D., Siyari, P., & Magnani, M. (2014). Diffusion processes on multilayer networks. arXiv:1405.4329.

  31. Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C. I., Gómez-Gardeñes, J., Romance, M., et al. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1–122.

    Article  MathSciNet  Google Scholar 

  32. Chen, W., Lu, W., & Zhang, N. (2012). Time-critical influence maximization in social networks with time-delayed diffusion process. AAAI’12: : Proceedings of the twenty-sixth AAAI conference on artificial intelligence (pp. 592-598). AAAI Press.

  33. Zhao, D., Li, L., Peng, H., Luo, Q., & Yang, Y. (2014). Multiple routes transmitted epidemics on multiplex networks. Physics Letters A, 378(10), 770–776.

    Article  MathSciNet  Google Scholar 

  34. Qian, D., Yagan, O., Yang, L., & Zhang, J. (2012). Diffusion of real-time information in social-physical networks. GLOBECOM’12: Global communications conference (pp. 2072-2077). IEEE Press.

  35. Erdős, P., & Renyi, A. (1961). On the strength of connectedness of a random graph. Acta Mathematica Hungarica, 12(1), 261–267.

    Google Scholar 

  36. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

  37. Callaway, D. S., Newman, M. E., Strogatz, S. H., & Watts, D. J. (2000). Network robustness and fragility: Percolation on random graphs. Physical Review Letters, 85(25), 5468.

    Article  Google Scholar 

  38. Zafarani, R., & Liu, H. (2013). Connecting users across social media sites: a behavioral-modeling approach. KDD’13: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 41-49). ACM Press.

  39. Li, C. Y., & Lin, S. D. (2014). Matching users and items across domains to improve the recommendation quality. KDD’14: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 801-810). ACM Press.

  40. Zhong, E., Fan, W., Zhu, Y., & Yang, Q. (2013). Modeling the dynamics of composite social networks. KDD’13: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 937-945). ACM Press.

  41. Nie, Y., Huang, J., Li, A., & Zhou, B. (2014). Identifying users based on behavioral-modeling across social media sites. Web Technologies and Applications, 8709, 48–55.

    Google Scholar 

  42. Nicosia, V., & Latora, V. (2014). Measuring and modelling correlations in multiplex networks. arXiv:1403.1546.

  43. Battiston, F., Nicosia, V., & Latora, V. (2014). Structural measures for multiplex networks. Physical Review E, 89(3), 032804.

    Article  Google Scholar 

  44. Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America, 99(Suppl 3), 7280–7287.

    Article  Google Scholar 

  45. Anshelevich, E., Hate, A., & Magdon-Ismail, M. (2014). Seeding influential nodes in non-submodular models of information diffusion. Autonomous Agents and Multi-Agent Systems. doi:10.1007/s10458-014-9254-4.

  46. Mihaylov, M., Tuyls, K., & Nowé, A. (2014). A decentralized approach for convention emergence in multi-agent systems. Autonomous Agents and Multi-agent Systems, 28(5), 749–778.

    Article  Google Scholar 

  47. Sequeira, P., Melo, F. S., & Paiva, A. (2014). Emergence of emotional appraisal signals in reinforcement learning agents. Autonomous Agents and Multi-agent Systems. doi:10.1007/s10458-014-9262-4

  48. West, D. B. (2001). Introduction to graph theory (Vol. 2). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  49. Gleeson, J. P. (2008). Cascades on correlated and modular random networks. Physical Review E, 77(4), 046117.

    Article  MathSciNet  Google Scholar 

  50. Yağan, O., & Gligor, V. (2012). Analysis of complex contagions in random multiplex networks. Physical Review E, 86(3), 036103.

    Article  Google Scholar 

  51. Traag, V. A., Van Dooren, P., & De Leenheer, P. (2013). Dynamical models explaining social balance and evolution of cooperation. PLoS One, 8(4), e60063.

    Article  Google Scholar 

  52. Marvel, S. A., Kleinberg, J., Kleinberg, R. D., & Strogatz, S. H. (2011). Continuous-time model of structural balance. Proceedings of the National Academy of Sciences, 108(5), 1771–1776.

    Article  Google Scholar 

  53. Leskovec, J., Huttenlocher, D., & Kleinberg, J. (2010). Signed networks in social media. CHI’10: Proceedings of the SIGCHI conference on human factors in computing systems (pp. 1361-1370). ACM Press.

  54. Mizerski, R. W. (1982). An attribution explanation of the disproportionate influence of unfavorable information. Journal of Consumer Research, 9, 301–310.

    Article  Google Scholar 

  55. Mangold, W. G., & Faulds, D. J. (2009). Social media: The new hybrid element of the promotion mix. Business Horizons, 52(4), 357–365.

    Article  Google Scholar 

  56. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  MathSciNet  Google Scholar 

  57. Bródka, P., Kazienko, P., Musiał, K., & Skibicki, K. (2012). Analysis of neighbourhoods in multi-layered dynamic social networks. International Journal of Computational Intelligence Systems, 5(3), 582–596.

    Article  Google Scholar 

  58. Villatoro, D., Sabater-Mir, J., & Sen, S. (2013). Robust convention emergence in social networks through self-reinforcing structures dissolution. ACM Transactions on Autonomous and Adaptive Systems, 8(1), 2.

    Article  Google Scholar 

  59. Liu, G., Wang, Y., Orgun, M. A., & Lim, E. P. (2013). Finding the optimal social trust path for the selection of trustworthy service providers in complex social networks. IEEE Transactions on Services Computing, 6(2), 152–167.

    Article  Google Scholar 

  60. Savarimuthu, B. T. R., Cranefield, S., Purvis, M. K., & Purvis, M. A. (2009). Norm emergence in agent societies formed by dynamically changing networks. Web Intelligence and Agent Systems, 7(3), 223–232.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61170164, and No. 61472079), the Funds for Distinguished Young Scholars of the Natural Science Foundation of Jiangsu Province (No.BK2012020), the Program for Distinguished Talents of Six Domains in Jiangsu Province (No. 2011-DZ023), and the Scientific Research Foundation of Graduate School of Southeast University (No. YBJJ1449).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yichuan Jiang.

Additional information

Portions of this work appeared as a full paper in AAMAS 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yan, F. & Jiang, Y. Cross-layers cascade in multiplex networks. Auton Agent Multi-Agent Syst 29, 1186–1215 (2015). https://doi.org/10.1007/s10458-015-9305-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-015-9305-5

Keywords

Navigation