Abstract
Due to the breadth of the subject, it is no longer possible to provide a review of all of the work being carried out in the field of Artificial Intelligence. However, a more localised review of research taking place in the overlap between engineering, AI and psychology can be meaningfully performed. We show here that while there have been marked successes in the past few years, there is an identifiable set of ‘classic’ problems that remain to be solved, and which largely direct the work ongoing in this area. This review aims to discuss the directions being taken at the current time, in particular the developing and maturing possibilities provided by neural networks and evolutionary computation, and by the use of our knowledge of the mind in developing artificial agents capable of mimicking our abilities to interact with the environment.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agatonovic-Kustrin S and Beresford R (2000). Basic concepts of artificial neural network (ANN) modelling and its applications in pharmaceutical research. J Pharma Biomed Anal 22: 717–727
Agranat AJ, Schwartsglass O and Shappir J (1996). The charge controlled analog synapse. Solid-State Electron 39: 1435–1439
Agre P and Horswill I (1997). Lifeworld analysis. J Artif Intell Res 6: 111–145
Aitkenhead MJ, Dalgetty IA, Mullins CE, McDonald AJS and Strachan NJC (2003). Weed and crop discrimination using image analysis and artificial intelligence methods. Comput Electron Agri 39: 157–171
Aitkenhead MJ, Foster AR, FitzPatrick EA and Townend J (1999). Modelling water release and absorption in soils using cellular automata. J Hydrol 220: 104–112
Akbarzadeh-T M-R, Kumbla K, Tunstel E and Jamshidi M (2000). Soft computing for autonomous robotic systems. Comput Electr Eng 26: 5–32
Alberdi E and Sleeman DH (1997). ReTAX: a step in the automation of taxonomic revision. Artif Intell 91: 257–279
Albert J (1999). Computational modeling of an early evolutionary stage of the nervous system. Biosystems 54: 77–90
Albesano D, Gemello R and Mana F (2000). Hybrid HMM-NN modeling of stationary-transitional units for continuous speech recognition. Inf Sci 123: 3–11
Artale A and Franconi E (1998). A temporal description logic for reasoning about actions and plans. J Artif Intell Res 9: 463–506
Baev K (1997). Highest level automatisms in the nervous system: A theory of functional principles underlying the highest forms of brain function. Prog Neurobiol 51: 129–166
Baluja S and Pomerleau DA (1997). Expectation-driven selective attention for visual monitoring and control of a robot vehicle. Rob Auton Syst 22: 329–344
Beer RD (1997). The dynamics of adaptive behavior: a research program. Rob Auton Syst 20: 257–289
Bellman R (1969). Modern analytic and computational methods in science and mathematics. American Elsevier Publishing Company Inc, New York
Bench-Capon TJM (1990) Knowledge representation; an approach to artificial intelligence. APIC series, No. 32, Academic Press, London, UK
Benkhoff J and Boice DC (1996). Modeling the thermal properties and the gas flux from a porous, ice-dust body in the orbit of P/Wirtanen. Planet Space Sci 44: 665–673
Bieszczad A and Pagurek B (1998). Neurosolver: neuromorphic general problem solver. J Inf Sci 105: 239–277
Bolles RC (1993). The story of psychology: a thematic history. Brooks/Cole Publishing Company. Pacific Grove, California
Bonnet A, Haton J-P and Truong-Ngoc J-M (1988). Expert systems principle and practice. Prentice-Hall Inc., New Jersey
Bouslama F (1999). Neural networks in the recognition of machine printed Arabic. Int J Pattern Recognit Artif Intell 13: 395–414
Brafman RI and Tennenholtz M (1996). On partially-controlled multi-agent systems. J Artif Intell Res 4: 477–507
Broggi A and Bertè S (1995). Vision-based road detection in automotive systems: a real-time expectation-driven approach. J Artif Intell Res 3: 325–348
Brooks RA and Maes P (eds) (1996). Artificial life IV. The MIT Press, Cambridge, MA
Brosnan T and Sun D-W (2004). Improving quality inspection of food products by computer vision—a review. J Food Eng 61: 3–16
Brouwer RK (1995). A method for training recurrent neural networks for classification by building basins of attraction. Neural Netw 8: 597–603
Buessler J-L and Urban J-P (1998). Visually guided movements: learning with modular neural maps in robotics. Neural Netw 11: 1395–1415
Bugmann G (1997). Biologically plausible neural computation. Biosystems 40: 11–19
Buluswar SD and Draper BA (1998). Color machine vision for autonomous vehicles. Eng Appl Artif Intell 11: 245–256
Burgard W, Cremers AB, Fox D, Hähnel D, Lakemeyer G, Schulz D, Steiner W and Thrun S (1999). Experiences with an interactive museum tour-guide robot. Artif Intell 114: 3–55
Cadutal JT (1998). Artificial intelligence support for the United States armed forces’ “System of systems” concept. U.S. Army War College, Pennsylvania
Carmignoto G (2000). Reciprocal communication systems between astrocytes and neurones. Prog Neurobiol 62: 561–581
Castellano G, Attolico G and Distante A (1997). Automatic generation of fuzzy rules for reactive robot controllers. Rob Auton Syst 22: 133–149
Changeux J and Dehaene S (2000). Hierarchical neuronal modeling of cognitive functions: from synaptic transmission to the Tower of London. Int J Psychophysiol 35: 179–187
Chella A, Frixione M and Gaglio S (1997). A cognitive architecture for artificial vision. Artif Intell 89: 73–111
Chen CLP, Cao Y and LeClair SR (1998). Materials structure-property prediction using a self-architecting neural network. J Alloys Compd 279: 30–38
Cheng H, Liu L, Li G, Shao L and Zhou C (1997). Second-order interpattern neural networks for optical pattern recognition. Opt Commun 139: 182–186
Chialvo DR and Bak P (1999). Learning from mistakes. Neuroscience 90: 1137–1148
Choi H and Rhee P (1999). Head gesture recognition using HMMs. Expert Syst Appl 17: 213–221
Cipolla R and Pentland A (eds) (1998). Computer vision for human–machine interaction. Cambridge University Press, Cambridge, UK
Cohn D, Ghahramani Z and Jordan MI (1996). Active learning with statistical models. J Artif Intell Res 4: 129–145
Dailey MN and Cottrell GW (1999). Organization of face and object recognition in modular neural network models. Neural Netw 12: 1053–1073
Damper RI, French RLB and Scutt TW (2000). ARBIB: an autonomous robot based on inspirations from biology. Rob Auton Syst 31: 247–274
Darwiche A and Provan G (1997). Query DAGs: a practical paradigm for implementing belief-network inference. J Artif Intell Res 6: 147–176
Davis GW (1995). Long-term regulation of short-term plasticity: a postsynaptic influence on presynaptic transmitter release. J Physiol 89: 33–41
Daxwanger WA, Schmidt G (1996) Neural and fuzzy approaches to vision-based parking control. Control Eng Pract 4(11):1607–1614
Daya B and Chauvet GA (1999). On the role of anatomy in learning by the cerebellar cortex. Math Biosci 155: 111–138
De Jong H and Rip A (1997). The computer revolution in science: steps towards the realization of computer- supported discovery environments. Artif Intell 91: 225–256
De la Rosa D, Mayol F, Moreno JA, Bonsón T and Lozano S (1999). An expert system/neural network model (ImpelERO) for evaluating agricultural soil erosion in Andalucia region, southern Spain. Agric, Ecosyst Enviro 73: 211–226
De Oliveira KA, Vannucci A and da Silva EC (2000). Using artificial neural networks to forecast chaotic time series. Physica D 284: 393–404
Dean J (1998). Animats and what they can tell us. Trends Cogn Sci 2: 60–67
Di Sciascio E, Donini FM and Mongiello M (2002). Structured knowledge representation for image retrieval. J Artif Intell Res 16: 209–257
Duch W (1996). Computational physics of the mind. Comput Phys Commun 97: 136–153
Dunbar R (1996). Grooming, gossip and the evolution of language. Harvard University Press, Cambridge, Massachusetts, USA
Erichsen R and Theumann WK (1995). Learning and retrieval in attractor neural networks with noise. Physica A 220: 390–402
Ezhov AA and Vvedensky VL (1996). Object generation with neural networks (when spurious memories are useful). Neural Netw 9: 1491–1495
Faller WE and Schreck SJ (1996). Neural networks: applications and opportunities in aeronautics. Prog Aerospace Sci 32: 433–456
Fedorenko YV, Husebye ES and Ruud BO (1999). Explosion site recognition; neural network discriminator using single three-component stations. Phys Earth Planet Int 113: 131–142
Fernández M and Caballero J (2006). Bayesian-regularized genetic neural networks applied to the modeling of non-peptide antagonists for the human luteinizing hormone-releasing hormone receptor. J Mol Grap Model 25(4): 410–422
Flood I (1998). Modeling dynamic engineering processes when the governing equations are unknown. Comput Struct 67: 367–374
Floreano D and Mondada F (1998). Evolutionary neurocontrollers for autonomous mobile robots. Neural Netw 11: 1461–1478
Franco L, Treves A (2001) A neural network face expression recognition system using an unsupervised local processing. In: Proceedings of the second international symposium on image and signal processing and analysis (ISPA’01), Croatia, 2001
Francois O and Zaharie D (1999). Markovian perturbations of discrete iterations: Lyapunov functions, global minimization and associative memory. Math Comput Model 29: 81–94
Freeman RD (1996). Studies of functional connectivity in the developing and mature visual cortex. J Physiol 90: 199–203
French RM (2000). The Turing test: the first 50 years. Trends Cogn Sci 4: 115–122
Friedlander MJ, Hersanyi K and Kara P (1996). Mechanisms for regulating synaptic efficiency in the visual cortex. J Physiol 90: 179–184
Gandhi CC and Matzel LD (2000). Modulation of presynaptic action potential kinetics underlies synaptic facilitation of Type B photoreceptors after associative conditioning in Hermissenda. J Neurosci 20: 2022–2035
García-Pedrajas N (2006). Cooperative coevolution of neural networks and ensembles of neural networks. Stud Comput Intell 16: 465–490
Gaussier P, Joulain C, Banquet JP, Leprêtre S and Revel A (2000). The visual homing problem: an example of robotics/biology cross fertilization. Rob Auton Syst 30: 155–180
Gaussier P, Revel A, Joulain C and Zrehen S (1997). Living in a partially structured environment: how to bypass the limitations of classical reinforcement techniques. Rob Auton Syst 20: 225–250
Gicquel N, Anderson JS and Kevrekidis IG (1998). Noninvertibility and resonance in discrete-time neural networks for time-series processing. Phys Lett A 238: 8–18
Giles LC, Horne BG and Lin T (1995). Learning a class of large finite state machines with a recurrent neural network. Neural Netw 8: 1359–1365
Glymour C, Ford KM and Hayes PJ (1998). Ramón Lull and the infidels. AI Mag 19: 136
Grigore O (1997). Syntactical self-organising map. Lect Notes Comput Sci 1226: 101–109
Gupta P and Sinha NK (1999). An improved approach for nonlinear system identification using neural networks. J Franklin Inst 336: 721–734
Harvey I, Husbands P, Cliff D, Thompson A and Jacobi N (1997). Evolutionary robotics: the Sussex approach. Rob Auton Syst 20: 205–224
Heiduschka P and Thanos S (1998). Implantable bioelectric interfaces for lost nerve functions. Prog Neurobiol 55: 433–461
Hirsch MW (1997). On-line training of a continually adapting adaline-like network. Neurocomputing 15: 347–361
Horiuchi TK and Koch C (1999). Analog VLSI-based modeling of the primate oculomotor system. Neural Comput 11: 243–265
Horneck G (1996). Life sciences of the Moon. Adv Space Res 18(11): 95–101
Husmeier D (2000). Learning non-stationary conditional probability distributions. Neural Netw 13: 287–290
Ibnkahla M (2000). Applications of neural networks to digital communications—a survey. Signal Processing 80: 1185–1215
Ilg W and Berns K (1995). A learning architecture based on reinforcement learning for adaptive control of the walking machine LAURON. Rob Auton Syst 15: 321–334
Illi OJ (1996). Future diagnostics technology. Expert Syst Appl 11: 147–155
Jerbic B, Grolinger K and Vranjes B (1999). Autonomous agent based on reinforcement learning and adaptive shadowed network. Artif Intell Eng 13: 141–157
Johannet A and Sarda I (1999). Goal-directed behaviours by reinforcement learning. Neurocomputing 28: 107–125
Kaiser M and Dillman R (1997). Hierarchical refinement of skills and skill application for autonomous robots. Rob Auton Syst 19: 259–271
Kamm C, Walker M and Rabiner L (1997). The role of speech processing in human-computer intelligent communication. Speech Commun 23: 263–278
Kavanau JL (1997). Memory, sleep and the evolution of mechanisms of synaptic efficacy maintenance. Neuroscience 79: 7–44
Kilmer W (1997). A command computer for complex autonomous systems. Neurocomputing 17: 47–59
Kinzel W (1999). Statistical physics of neural networks. Comput Phys Commun 121–122: 86–93
Kirchberg KJ, Jesorsky O and Frischholtz RW (2002). Genetic model opimization for Hausdorff distance-based face localization. Lect Notes Comput Sci 2359: 103–111
Kozma R (1997). Multi-level knowledge representation in neural networks with adaptive structure. Syst Res Inf Sci 7: 147–167
Krebs F and Bossel H (1997). Emergent value orientation in self-organization of an animat. Ecol Model 96: 143–164
Kühn S and Cruse H (2005). Static mental representations in recurrent neural networks for the control of dynamic behavioural sequences. Connection Sci 17(3–4): 343–360
Ladunga I (2000). Large-scale predictions of secretory proteins from mammalian genomic and EST sequences. Curr Opin Biotechnol 11: 13–18
Langton CG (ed) (1996) Artificial Life: an overview. The MIT Press, Cambridge, Massachusetts, USA
Leahey TH (1980). A history of psychology: main currents in psychological thought. Prentice-Hall Inc., New Jersey
Lek S and Guégan JF (1999). Artificial neural networks as a tool in ecological modelling, an introduction. Ecol Model 120: 65–73
Levine ER, Kimes DS and Sigillito VG (1996). Classifying soil structure using neural networks. Ecol Model 92: 101–108
Lin C-K and Wang S-D (1998). A self-organizing fuzzy control approach for bank-to-turn missiles. Fuzzy Sets Syst 96: 281–306
Lin L-J, Hancock TR and Judd JS (1998a). A robust landmark-based system for vehicle location using low- bandwidth vision. Rob Auton Syst 25: 19–32
Lin X, Ohtsubo J and Mori M (1998b). Capacity of optical associative memory using a terminal attractor model. Opt Commun 146: 49–54
Liu P (2000). Max-min fuzzy Hopfield neural networks and an efficient learning algorithm. Fuzzy Sets Syst 112: 41–49
Liu X, Wang DL (2001) Appearance-based recognition using perceptual components. In: Proceedings of the international joint conference on neural networks 2001 (IJCNN-01), Washington DC, USA, 2001
Mackay DS and Robinson VB (2000). A multiple criteria decision support system for testing integrated environmental models. Fuzzy Sets Syst 113: 53–67
Maeda M, Shimakawa M and Murakami S (1995). Predictive fuzzy control of an autonomous mobile robot with forecast learning function. Fuzzy Sets Syst 72: 51–60
Mahajan A and Figueroa F (1997). Four-legged intelligent mobile autonomous robot. Robot CIM-INT Manuf 13: 51–61
Marchant JA (1996). Tracking of row structure in three crops using image analysis. Comput Electr Agric 15: 161–179
Markram H and Tsodyks M (1996). Redistribution of synaptic efficacy: a mechanism to generate infinite synaptic input diversity from a homogenous population of neurons without changing absolute synaptic efficacies. J Physiol 90: 229–232
McCafferty JD (1990). Human and machine vision: computing perceptual organisation. Ellis Horwood, New York
McCarthy J and Hayes PJ (1969). Some philosophical problems from the standpoint of artificial intelligence. In: Michie, D (eds) Machine Intelligence 4, American Elsevier, New York
McCorduck P (1979). Machines who think. W. H. Freeman and Company, San Francisco
McCulloch W and Pitts W (1943). A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 7: 115–133
McNamara S, Cunningham P and Byrne J (1998). Neural networks for language identification: a comparative study. Inf Processing & Management 34: 395–403
Mehr I and Sculley TL (1996). A multilayer neural network structure for analog filtering. IEEE Trans Circuits Syste II-Analog Digital 43: 613–618
Minasny B, McBratney AB and Bristow KL (1999). Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma 93: 225–253
Minsky M (1986). The society of mind. Simon and Schuster, New York
Moriarty DE, Schultz AC and Grefenstette JJ (1999). Evolutionary algorithms for reinforcement learning. J Artif Intell Res 11: 241–276
Morimoto T and Hashimoto Y (2000). AI approaches to identification and control of total plant production systems. Control Eng Pract 8: 555–567
Morimoto T, Takeuchi T, Miyata H and Hashimoto Y (1996). Intelligent control for a plant production system. Control Eng Pract 4: 773–784
Nakasuka S and Tanabe T (1996). New control problems associated with a proposed future space transportation infrastructure. Control Eng Pract 4: 1703–1714
Nechyba MC, Xu Y (1994) Neural network approach to control system identification with variable activation functions. In: Proceedings of the IEEE international symposium on intelligent control, Columbus, Ohio, USA, 1994
Neubig M, Destexhe A (2000) Are inhibitory synaptic conductances on thalamic relay neurons inhomogeneous? Are synapses from individual afferents clustered? Neurocomputing 32–33:213–218
Ng KT and Feng J (2001). Dynamical associative memory based on an oscillatory neural network. J Intell Syst 11: 155–171
Nikravesh M, Farell AE and Stanford TG (1997). Dynamic neural network control for non-linear systems: optimal neural network structure and stability analysis. Chem Eng J 68: 41–50
Noever DA, Brittain A, Matsos HC, Baskaran S and Obenhuber D (1996). The effects of variable biome distribution on global climate. Biosystems 39: 135–141
Nolfi S (1997). Evolving non-trivial behaviours on real robots: a garbage collecting robot. Rob Auton Syst 22: 187–198
Nordby VJ and Hall CS (1974). A guide to psychologists and their concepts. W. H. Freeman & Son, San Francisco
O’ Malley PD, Nechyba MC, Arroyo AA (2002) Human activity tracking for wide-area surveillance. In: Proceedings of 2002 Florida conference on recent advances in robotics, Miami, USA, 2002
Okamoto M, Sekiguchi T, Tanaka K, Maki Y and Yoshida S (1999). Biochemical neuron: hardware implementation of functional devices by mimicking the natural intelligence such as metabolic control systems. Comput Electr Eng 25: 421–438
Olson RL and Sequeira RA (1995). Emergent computation and the modeling and management of ecological systems. Comput Electr Agric 12: 183–209
Paraskevas PA, Pantelakis IS and Lekkas TD (1999). An advanced integrated expert system for wastewater treatment plants control. Knowledge-Based Syst 12: 355–361
Pasquariello G, Satalino G, la Forgia V and Spilotros F (1998). Automatic target recognition for naval traffic control using neural networks. Image Vision Comput 16: 67–73
Pedrycz W (1991). A referential scheme of fuzzy decision-making and its neural network structure. IEEE Trans Syst Man Cybern 21: 1593–1604
Pentland A and Liu A (1999). Modeling and prediction of human behaviour. Neural Comput 11: 229–242
Penumadu D and Zhao R (1999). Triaxial compression behavior of sand and gravel using artificial neural networks (ANN). Comput Geotech 24: 207–230
Pigford DV and Baur G (1990). Expert systems for business: concepts and applications. Boyd & Fraser, San Francisco
Pulasinghe K, Watanabe K, Izumi K and Kiguchi K (2004). Modular fuzzy-neuro controller driven by spoken language commands. IEEE Trans Syst Man Cybern Part B: Cybern 34(1): 293–302
Quinn K, Didier AJ, Baker JF and Peterson BW (1998). Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity. Brain Res Bull 46: 333–346
Ray SR and Hsu WH (1998). Self-organized-expert modular network for classification of spatiotemporal sequences. Intell Data Anal 2: 287–301
Ricotti ME and Zio E (1999). Neural network approach to sensitivity and uncertainty analysis. Reliability Engi Syst Safety 64: 59–71
Rietman E (1994). Genesis redux: experiments creating artificial life. McGraw-Hill, New York
Rodrigue J-P (1997). Parallel modelling and neural networks: an overview for transportation/land use systems. Transpn Res.-C. 5: 259–271
Rosenberg JR, Halliday DM, Breeze P and Conway BA (1998). Identification of patterns of neuronal connectivity—partial spectra, partial coherence, and neuronal interactions. J Neurosci Meth 83: 57–72
Rusakov DA, Stewart MG, Davies HA and Harrison E (1995). Population trends in the fine spatial re-organization of synaptic elements in forebrain regions of chicks 0.5 and 24 hours after passive avoidance training. Neuroscience 66: 291–307
Saksida LM, Raymond SM and Touretzky DS (1997). Shaping robot behavior using principles from instrumental conditioning. Rob Auton Syst 22: 231–249
Salmela P, Lehtokangas M and Saarinen J (1999). Neural network based digit recognition system for dialling in noisy environments. Inf Sci 121: 171–199
Samejima K and Omori T (1999). Adaptive internal state space construction method for reinforcement learning of a real-world agent. Neural Netw 12: 1143–1155
Schaal S (1999). Is imitation learning the route to humanoid robots?. Trends Cogn Sci 3: 233–242
Schaap MG and Leij FJ (1998). Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil Tillage Res 47: 37–42
Schenker B and Agarwal M (1997). Dynamic modelling using neural networks. Int J Syst Sci 28: 1285–1298
Schleiter IM, Borchardt D, Wagner R, Dapper T, Schmidt K-D, Schmidt H-H and Werner H (1999). Modelling water quality, bioindication and population dynamics on lotic ecosystems using neural networks. Ecol Model 120: 271–286
Schoonhoven R, Prijs VF and Frijns JHM (1997). Transmitter release in inner hair cell synapses: a model analysis of spontaneous and driven rate properties of cochlear nerve fibres. Hear Res 113: 247–260
Sette S, Boullart L and van Langenhove L (1998). Using genetic algorithms to design a control strategy of an industrial process. Control Engi Pract 6: 523–527
Seung HS (1998). Continuous attractors and oculomotor control. Neural Netw 11: 1253–1258
Smith CS (1980). From art to science. Seventy-two objects illustrating the nature of discovery. The MIT Press, Cambridge, Massachusetts
Smith RE and Cribbs HB (1997). Combined biological paradigms: a neural, genetics-based autonomous systems strategy. Rob Auton Syst 22: 65–74
Starrenburg JG, van Luenen WTC, Oelen W and van Amerongen J (1996). Learning feedforward controller for a mobile robot vehicle. Control Eng Pract 4: 1221–1230
Steels L (1997). A selectionist mechanism for autonomous behaviour acquisition. Rob Auton Syst 20: 117–131
Stoecker M, Reitboeck HJ and Eckhorn R (1996). A neural network for scene segmentation by temporal coding. Neurocomputing 11: 123–134
Sumpter N and Bulpitt A (2000). Learning spatio-temporal patterns for predicting object behaviour. Image Voice Compu 18: 697–704
Talukder A, Casasent D (2001) Adaptive activation function neural net for face recognition. In: Proceedings of the IEEE international joint conference on neural networks, Washington, DC, USA, 2001
Thrun S and Mitchell TM (1995). Lifelong robot learning. Rob Auton Syst 15: 25–46
Timmermans AJM and Hulzebosch AA (1996). Computer vision system for on-line sorting of pot plants using an artificial neural network classifier. Comput Electr Agric 15: 41–55
Tipping E, Woof C, Rigg E, Harrison AF, Ineson P, Taylor K, Benham D, Poskitt J, Rowland AP, Bol R and Harkness DD (1999). Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment. Environ Int 25: 83–95
Treves A, Rolls E and Simmen M (1997). Time for retrieval in recurrent associative memories. Physica D 107: 392–400
Tsaih R, Hsu Y and Lai CC (1998). Forecasting S & P 500 stock index futures with a hybrid AI system. Decis Support Syst 23: 161–174
Tsodyks M (2005). Attractor neural networks and spatial maps in hippocampus. Neuron 48(2): 168–169
Tyler L, Czarnecki CA (1999) A neural vision based controller for a robot footballer. In: Proceedings of the 7th IEE int. conference on image processing and its applications, Manchester, UK, 1999
Von Wichert G (1998). Mobile robot localization using a self-organized visual environment representation. Rob Auton Syst 25: 185–194
Von Wichert G (1999). Can robots learn to see?. Control Eng Pract 7: 783–795
Walley WJ and Fontama VN (1998). Neural network predictors of average score per taxon and number of families at unpolluted river sites in Great Britain. Wat Res 32: 613–622
Weiss M and Baret F (1999). Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data. Remote Sens Environ 70: 293–306
Weng J and Chen S (1998). Vision-guided navigation using SHOSLIF. Neural Netw 11: 1511–1529
Wolff JR, Laskawi R, Spatz WB and Missler M (1995). Structural dynamics of synapses and synaptic components. Behav Brain Res 66: 13–20
Wong JC, McDonald KA and Palazoglu A (1998). Classification of process trends based on fuzzified symbolic representation and hidden Markov models. J Proc Cont 8: 395–408
Wong PM, Jang M, Cho S and Gedeon TD (2000). Multiple permeability predictions using an observational learning algorithm. Comput Geosci 26: 907–913
Yang H-L (1997). A simple coupler to link expert systems with database systems. Expert Syst Appl 12: 179–188
Yeh I-C (1997). Application of neural networks to automatic soil pressure balance control for shield tunneling. Autom Construct 5: 421–426
Yun C-B and Bahng EY (2000). Substructural identification using neural networks. Comput Struct 77: 41–52
Zardeki A (1995). Fuzzy controllers in nuclear material accounting. Fuzzy Sets Syst 74: 73–79
Zhai Y, Thomasson JA, Boggess JE III and Sui R (2006). Soil texture classification with artificial neural networks operating on remote sensing data. Comput Electr Agric 54(2): 53–68
Zhang M, Fulcher J and Scofield RA (1997). Rainfall estimation using artificial neural network group. Neurocomputing 16: 97–115
Zhao Y and Collins EG Jr (2005). Robust automatic parallel parking in tight spaces via fuzzy logic. Rob Auton Syst 51(2–3): 111–127
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Aitkenhead, M.J., McDonald, A.J.S. The state of play in machine/environment interactions. Artif Intell Rev 25, 247–276 (2006). https://doi.org/10.1007/s10462-007-9063-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10462-007-9063-0