Skip to main content

A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

In this paper, the algorithmic concepts of the Cuckoo-search (CK), Particle swarm optimization (PSO), Differential evolution (DE) and Artificial bee colony (ABC) algorithms have been analyzed. The numerical optimization problem solving successes of the mentioned algorithms have also been compared statistically by testing over 50 different benchmark functions. Empirical results reveal that the problem solving success of the CK algorithm is very close to the DE algorithm. The run-time complexity and the required function-evaluation number for acquiring global minimizer by the DE algorithm is generally smaller than the comparison algorithms. The performances of the CK and PSO algorithms are statistically closer to the performance of the DE algorithm than the ABC algorithm. The CK and DE algorithms supply more robust and precise results than the PSO and ABC algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Akay B, Karaboga D (2010) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci (in press, online version)

  • Ali MM, Torn A (2004) Population set-based global optimization algorithms: some modifications and numerical studies. Comput Oper Res 31(10): 1703–1725

    Article  MathSciNet  MATH  Google Scholar 

  • Bin X, Jie C, Zhi-Hong P, Feng P (2010) An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization. Sci China Inf Sci 53(5): 980–989

    Article  MathSciNet  Google Scholar 

  • Chaoshun L, Jianzhong Z (2011) Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energy Convers Manag 52(1): 374–381

    Article  Google Scholar 

  • Clerc M, Kennedy J (2002) The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1): 58–73

    Article  Google Scholar 

  • Corne D, Dorigo M, Glover F (1999) New ideas in optimization. McGraw-Hill, USA

    Google Scholar 

  • Das S, Suganthan P (2009) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1): 4–31

    Article  Google Scholar 

  • Das S, Mukhopadhyay A, Roy A, Abraham A, Panigrahi BK (2011) Exploratory power of the Harmony search algorithm: analysis and improvements for global numerical optimization. IEEE Trans Syst Man Cybern Part B Cybern 4(1): 89–106

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2): 182–197

    Article  Google Scholar 

  • Del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez JC, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12(2): 171–195

    Article  Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern 26(1): 29–41

    Article  Google Scholar 

  • Dorigo M, Bonabeau E, Theraulaz G (2000) Ant algorithms and stigmergy. Future Gener Comput Syst 16(8): 851–871

    Article  Google Scholar 

  • Dorigo M, Trianni V, Sahin E et al (2004) Evolving self-organizing behaviors for a swarm-bot. Auton Robots 17(2–3): 223–245

    Article  Google Scholar 

  • Duman S, Guvenc U, Yorukeren N (2010) Gravitational search algorithm for economic dispatch with valve-point effects. Int Rev Electr Eng Iree 5(6): 2890–2895

    Google Scholar 

  • Eberhart RC, Shi Y (2001) Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of IEEE congress on evolutionary computation vol 1, pp 94–100

  • Esmat R, Hossein NP, Saeid S (2010) Bgsa: binary gravitational search algorithm. Nat Comput 9(3): 727–745

    Article  MathSciNet  MATH  Google Scholar 

  • Esmat R, Hossien NP, Saeid S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intell 24(1): 117–122

    Article  Google Scholar 

  • Fei K, Junjie L, Qing X (2009) Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput Struct 87(13–14): 861–870

    Google Scholar 

  • Ferrante N, Ville T (2010) Recent advances in differential evolution: a survey and experimental analysis. Artif Intell Rev 33(1–2): 61–106

    Google Scholar 

  • Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: Harmony search. Simulation 76(2): 60–68

    Article  Google Scholar 

  • Haupt R (1995) Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems. IEEE Trans Magn 31(3): 1932–1935

    Article  Google Scholar 

  • Horst R, Pardalos PM, Thoai NV (2000) Introduction to global optimization. Kluwer Academic Publishers, Dordrecht, The Netherland

    MATH  Google Scholar 

  • Janez B, Borko B, Saso G et al (2007) Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput 11(7): 617–629

    Article  MATH  Google Scholar 

  • Juang C (2004) A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans Syst Man Cybern Part B Cybern 34(2): 997–1006

    Article  Google Scholar 

  • Kaelo P, Ali MM (2006) A numerical study of some modified differential evolution algorithms. Eur J Oper Res 169(3): 1176–1184

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Akay B (2009a) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(12): 108–132

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Akay B (2009b) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31(1–4): 61–85

    Article  Google Scholar 

  • Karaboga D, Basturk B (2007a) Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems. Lecture Notes Comput Sci 4529: 789–798

    Article  Google Scholar 

  • Karaboga D, Basturk B (2007b) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Glob Optim 39(3): 459–471

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital iir filters. J Frankl Inst Eng Appl Math 346(4): 328–348

    Article  MathSciNet  MATH  Google Scholar 

  • Lee K, Geem ZW (2004) A new structural optimization method based on the Harmony search algorithm. Comput Struct 82(9–10): 781–798

    Article  Google Scholar 

  • Lee K, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38): 3902–3933

    Article  MATH  Google Scholar 

  • Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput 9(6): 448–462

    Article  MATH  Google Scholar 

  • Mahamed GO, Mehrdad M (2008) Global-best Harmony search. Appl Math Comput 198(2): 643–656

    Article  MathSciNet  MATH  Google Scholar 

  • Mahdavi M, Fesanghary M, Damangir E (2007) An improved Harmony search algorithm for solving optimization problems. Appl Math Comput 188(2): 1567–1579

    Article  MathSciNet  MATH  Google Scholar 

  • Martinoli A, Easton K, Agassounon W (2004) Modeling swarm robotic systems: a case study in collaborative distributed manipulation. Int J Robot Res 23(4-5): 415–436

    Article  Google Scholar 

  • Mersha AG, Dempe S (2011) Direct search algorithm for bilevel programming problems. Comput Optim Appl 49(1): 1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Nowak W, Cirpka OA (2004) A modified levenberg-marquardt algorithm for quasi-linear geostatistical inversing. Adv Water Resour 27(7): 737–750

    Article  Google Scholar 

  • Ong YS, Lim MH, Zhu N et al (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B Cybern 36(1): 141–152

    Article  Google Scholar 

  • Price K, Storn R (1997) Differential evolution. Dr Dobbs J 22(4): 18–24

    MathSciNet  Google Scholar 

  • Price K, Storn R, Lampinen J (2005) Differential evolution: a practical approach to global optimization. Springer, Berlin, Germany

    MATH  Google Scholar 

  • Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13): 2232–2248

    Article  MATH  Google Scholar 

  • Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3): 240–255

    Article  Google Scholar 

  • Shahryar R, Hamid RT, Magdy MAS (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1): 64–79

    Article  Google Scholar 

  • Sousa T, Silva A, Neves A (2004) Particle swarm based data mining algorithms for classification tasks. Comput Optim Appl 30(5–6): 767–783

    Google Scholar 

  • Storn R (1999) System design by constraint adaptation and differential evolution. IEEE Trans Evol Comput 3(1): 22–34

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4): 341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Swagatam D, Ajith A, Uday KC et al (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evol Comput 13(3): 526–553

    Article  Google Scholar 

  • Tahk MJ, Park MS, Woo HW, Kim HJ (2009) Hessian approximation algorithms for hybrid optimization methods. Eng Optim 41(7): 609–633

    Article  MathSciNet  Google Scholar 

  • Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6): 317–325

    Article  MathSciNet  MATH  Google Scholar 

  • Vesterstrom J, Thomsen R (2004) A comparative study of differential evolution particle swarm optimization and evolutionary algorithms on numerical benchmark problems. Congr Evol Comput, CEC2004 2: 1980–1987

    Google Scholar 

  • Yang X (2005) Engineering optimizations via nature-inspired virtual bee algorithms. Lecture Notes Comput Sci 3562: 317–323

    Article  Google Scholar 

  • Yang X, Deb S (2009) Cuckoo search via levey flights. World congress on nature and biologically inspired computing’NABIC-2009, vol 4. Coimbatore, pp 210–214

  • Yang XS (2009) Firefly algorithms for multimodal optimization. Lecture Notes Comput Sci 5792: 169–178

    Article  Google Scholar 

  • Yang XS, Deb S (2010) Engineering optimisation by Cuckoo search. Int J Math Modell Numer Optim 1(4): 330–343

    MATH  Google Scholar 

  • Yoshida H, Kawata K, Fukuyama Y et al (2000) A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans Power Syst 15(4): 1232–1239

    Article  Google Scholar 

  • Zhang J, Sanderson A (2009) Tracking and optimizing dynamic systems with particle swarms. IEEE Trans Evol Comput 13(5): 945–958

    Article  Google Scholar 

  • Zhang J, Chung H, Lo W (2007) Engineering optimizations via nature-inspired virtual bee algorithms. IEEE Trans Evol Comput 11(3): 326–335

    Article  Google Scholar 

  • Zhua G, Kwongb S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7): 3166–3173

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Besdok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Civicioglu, P., Besdok, E. A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39, 315–346 (2013). https://doi.org/10.1007/s10462-011-9276-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-011-9276-0

Keywords