Abstract
In this paper, the algorithmic concepts of the Cuckoo-search (CK), Particle swarm optimization (PSO), Differential evolution (DE) and Artificial bee colony (ABC) algorithms have been analyzed. The numerical optimization problem solving successes of the mentioned algorithms have also been compared statistically by testing over 50 different benchmark functions. Empirical results reveal that the problem solving success of the CK algorithm is very close to the DE algorithm. The run-time complexity and the required function-evaluation number for acquiring global minimizer by the DE algorithm is generally smaller than the comparison algorithms. The performances of the CK and PSO algorithms are statistically closer to the performance of the DE algorithm than the ABC algorithm. The CK and DE algorithms supply more robust and precise results than the PSO and ABC algorithms.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Akay B, Karaboga D (2010) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci (in press, online version)
Ali MM, Torn A (2004) Population set-based global optimization algorithms: some modifications and numerical studies. Comput Oper Res 31(10): 1703–1725
Bin X, Jie C, Zhi-Hong P, Feng P (2010) An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization. Sci China Inf Sci 53(5): 980–989
Chaoshun L, Jianzhong Z (2011) Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energy Convers Manag 52(1): 374–381
Clerc M, Kennedy J (2002) The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1): 58–73
Corne D, Dorigo M, Glover F (1999) New ideas in optimization. McGraw-Hill, USA
Das S, Suganthan P (2009) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1): 4–31
Das S, Mukhopadhyay A, Roy A, Abraham A, Panigrahi BK (2011) Exploratory power of the Harmony search algorithm: analysis and improvements for global numerical optimization. IEEE Trans Syst Man Cybern Part B Cybern 4(1): 89–106
Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2): 182–197
Del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez JC, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12(2): 171–195
Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern 26(1): 29–41
Dorigo M, Bonabeau E, Theraulaz G (2000) Ant algorithms and stigmergy. Future Gener Comput Syst 16(8): 851–871
Dorigo M, Trianni V, Sahin E et al (2004) Evolving self-organizing behaviors for a swarm-bot. Auton Robots 17(2–3): 223–245
Duman S, Guvenc U, Yorukeren N (2010) Gravitational search algorithm for economic dispatch with valve-point effects. Int Rev Electr Eng Iree 5(6): 2890–2895
Eberhart RC, Shi Y (2001) Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of IEEE congress on evolutionary computation vol 1, pp 94–100
Esmat R, Hossein NP, Saeid S (2010) Bgsa: binary gravitational search algorithm. Nat Comput 9(3): 727–745
Esmat R, Hossien NP, Saeid S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intell 24(1): 117–122
Fei K, Junjie L, Qing X (2009) Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput Struct 87(13–14): 861–870
Ferrante N, Ville T (2010) Recent advances in differential evolution: a survey and experimental analysis. Artif Intell Rev 33(1–2): 61–106
Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: Harmony search. Simulation 76(2): 60–68
Haupt R (1995) Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems. IEEE Trans Magn 31(3): 1932–1935
Horst R, Pardalos PM, Thoai NV (2000) Introduction to global optimization. Kluwer Academic Publishers, Dordrecht, The Netherland
Janez B, Borko B, Saso G et al (2007) Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput 11(7): 617–629
Juang C (2004) A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans Syst Man Cybern Part B Cybern 34(2): 997–1006
Kaelo P, Ali MM (2006) A numerical study of some modified differential evolution algorithms. Eur J Oper Res 169(3): 1176–1184
Karaboga D, Akay B (2009a) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(12): 108–132
Karaboga D, Akay B (2009b) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31(1–4): 61–85
Karaboga D, Basturk B (2007a) Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems. Lecture Notes Comput Sci 4529: 789–798
Karaboga D, Basturk B (2007b) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Glob Optim 39(3): 459–471
Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital iir filters. J Frankl Inst Eng Appl Math 346(4): 328–348
Lee K, Geem ZW (2004) A new structural optimization method based on the Harmony search algorithm. Comput Struct 82(9–10): 781–798
Lee K, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38): 3902–3933
Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput 9(6): 448–462
Mahamed GO, Mehrdad M (2008) Global-best Harmony search. Appl Math Comput 198(2): 643–656
Mahdavi M, Fesanghary M, Damangir E (2007) An improved Harmony search algorithm for solving optimization problems. Appl Math Comput 188(2): 1567–1579
Martinoli A, Easton K, Agassounon W (2004) Modeling swarm robotic systems: a case study in collaborative distributed manipulation. Int J Robot Res 23(4-5): 415–436
Mersha AG, Dempe S (2011) Direct search algorithm for bilevel programming problems. Comput Optim Appl 49(1): 1–15
Nowak W, Cirpka OA (2004) A modified levenberg-marquardt algorithm for quasi-linear geostatistical inversing. Adv Water Resour 27(7): 737–750
Ong YS, Lim MH, Zhu N et al (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B Cybern 36(1): 141–152
Price K, Storn R (1997) Differential evolution. Dr Dobbs J 22(4): 18–24
Price K, Storn R, Lampinen J (2005) Differential evolution: a practical approach to global optimization. Springer, Berlin, Germany
Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13): 2232–2248
Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3): 240–255
Shahryar R, Hamid RT, Magdy MAS (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1): 64–79
Sousa T, Silva A, Neves A (2004) Particle swarm based data mining algorithms for classification tasks. Comput Optim Appl 30(5–6): 767–783
Storn R (1999) System design by constraint adaptation and differential evolution. IEEE Trans Evol Comput 3(1): 22–34
Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4): 341–359
Swagatam D, Ajith A, Uday KC et al (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evol Comput 13(3): 526–553
Tahk MJ, Park MS, Woo HW, Kim HJ (2009) Hessian approximation algorithms for hybrid optimization methods. Eng Optim 41(7): 609–633
Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85(6): 317–325
Vesterstrom J, Thomsen R (2004) A comparative study of differential evolution particle swarm optimization and evolutionary algorithms on numerical benchmark problems. Congr Evol Comput, CEC2004 2: 1980–1987
Yang X (2005) Engineering optimizations via nature-inspired virtual bee algorithms. Lecture Notes Comput Sci 3562: 317–323
Yang X, Deb S (2009) Cuckoo search via levey flights. World congress on nature and biologically inspired computing’NABIC-2009, vol 4. Coimbatore, pp 210–214
Yang XS (2009) Firefly algorithms for multimodal optimization. Lecture Notes Comput Sci 5792: 169–178
Yang XS, Deb S (2010) Engineering optimisation by Cuckoo search. Int J Math Modell Numer Optim 1(4): 330–343
Yoshida H, Kawata K, Fukuyama Y et al (2000) A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans Power Syst 15(4): 1232–1239
Zhang J, Sanderson A (2009) Tracking and optimizing dynamic systems with particle swarms. IEEE Trans Evol Comput 13(5): 945–958
Zhang J, Chung H, Lo W (2007) Engineering optimizations via nature-inspired virtual bee algorithms. IEEE Trans Evol Comput 11(3): 326–335
Zhua G, Kwongb S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7): 3166–3173
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Civicioglu, P., Besdok, E. A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39, 315–346 (2013). https://doi.org/10.1007/s10462-011-9276-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10462-011-9276-0