Skip to main content
Log in

The review of multiple evolutionary searches and multi-objective evolutionary algorithms

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Over the past decade, subdividing evolutionary search into multiple local evolutionary searches has been identified as an effective method to search for optimal solutions of multi-objective optimization problems (MOPs). The existing multi-objective evolutionary algorithms that benefit from the multiple local searches (multiple-MOEAs, or MMOEAs) use different dividing methods and/or collaborations (information sharing) strategies between the created divisions. Their local evolutionary searches are implicitly or explicitly guided toward a part of global optimal solutions instead of converging to local ones in some divisions. In this reviewed paper, the dividing methods and the collaborations strategies are reviewed, while their advantage and disadvantage are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Alba E, Dorronsoro B, Luna F, Nebro AJ, Bouvry P, Hogie L (2007) A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs. Comput Commun 30(4):685–697

    Google Scholar 

  • Alba E, Giacobini M, Tomassini M (2006) Decentralized cellular evolutionary algorithms. In: Olaviu S, Zomaya AY (eds) Handbook of bioinspired algorithms and application. Chapman & Hall/CRC, London, pp 103–120

    Google Scholar 

  • Auger A, Bader J, Brockhoff D, Zitzler E (2009) Theory of the hypervolume indicator: optimal mu-distributions and the choice of the reference point. Foga’09: proceedings of the 10th Acm Sigrvo conference on foundations of genetic algorithms, pp. 87–102.

  • Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76

    Article  Google Scholar 

  • Bader JM (2009) Hypervolume-based search for multiobjective optimization: theory and methods. Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  • Branke J, Kaubler T, Schmeck H (2000) Guiding multi-objective evolutionary algorithms toward interesting regions (No. 399). University of Karlsruhe, Germany: Institute AIFBo. Document Number

  • Branke J, Schmeck H, Deb K, Reddy M (2004) Parallelizing multi-objective evolutionary algorithms: Cone separation. In: Cec 2004: proceedings of the 2004 congress on evolutionary computation, vols 1 and 2, pp 1952–1957, 2371

  • Brans JP, Vincke P, Mareschal B (1986) How to select and how to rank projects—the Promethee Method. Eur J Oper Res 24(2):228–238

    Article  MATH  MathSciNet  Google Scholar 

  • Cagnina LC, Esquivel SC, Coello CAC (2006) A particle swarm optimizer for constrained numerical optimization. In: Parallel problem solving from nature—Ppsn Ix, Proceedings, vol 4193, pp 910–919

  • Cagnina LC, Esquivel SC, Coello CAC (2011) Solving constrained optimization problems with a hybrid particle swarm optimization algorithm. Eng Optim 43(8):843–866

    Article  MathSciNet  Google Scholar 

  • Chakraborty D, Dutta A (2006) Island model parallel genetic algorithm for optimization of symmetric FRP laminated composites. Paper presented at the in proceedings of 13th international conference of high performance computing (HiPC)

  • Chang PC, Chen SH (2009) The development of a sub-population genetic algorithm II (SPGA II) for multi-objective combinatorial problems. Appl Soft Comput 9(1):173–181

    Article  Google Scholar 

  • Chang PC, Chen SH, Hsieh JC (2006) A global archive sub-population genetic algorithm with adaptive strategy in multi-objective parallel-machine scheduling problem. Adv Nat Comput Pt 1 4221:730–739

    Google Scholar 

  • Chang PC, Chen SH, Lin KL (2005) Two-phase sub population genetic algorithm for parallel machine-scheduling problem. Expert Syst Appl 29(3):705–712

    Article  Google Scholar 

  • Chang PC, Chen SH, Liu CH (2007) Sub-population genetic algorithm with mining gene structures for multiobjective flowshop scheduling problems. Expert Syst Appl 33(3):762–771

    Article  Google Scholar 

  • Coello CAC, Aguirre AH, Zitzler E (2007a) Evolutionary multi-objective optimization. Eur J Oper Res 181(3):1617–1619

    Article  Google Scholar 

  • Coello CAC, Lamont GB, Veldhuizen DAV (2007b) Evolutionary algorithms for solving multi-objective problems, 2nd edn. Springer Science+Business Media, LLC., New York

    MATH  Google Scholar 

  • Cohon JL, Marks DH (1975) Review and evaluation of multiobjective programming techniques. Water Resour Res 11(2):208–220

    Article  Google Scholar 

  • Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by Ant Colonies. Paper presented at the actes de la première conférence européenne sur la vie artificielle

  • Corne DW, Knowles JD, Oates MJ (2000) The Pareto envelope-based selection algorithm for multiobjective optimization. Paper presented at the the parallel problem solving from nature VI conference, Paris, France

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, West Sussex

    MATH  Google Scholar 

  • Deb K (2002) Multi-objective optimization using evolutionary algorithms. Wiley, West Sussex

    Google Scholar 

  • Deb K (2003) Multi-objective evolutionary algorithms: introduction bias among Pareto-optimal solutions. In: Ghosh A, Tsutsui S (eds) Advances in evolutionary computing: theory and applications. Springer, Berlin

    Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Deb K, Zope P, Jain A (2003) Distributed computing of Pareto-optimal solutions with evolutionary algorithms. In: Evolutionary multi-criterion optimization, proceedings, vol 2632, pp 534–549

  • Engelbrecht AP (2007) Computational intelligence, an introduction, 2nd edn. Wiley, England

    Book  Google Scholar 

  • Figueira JR, Liefooghe A, Talbi EG, Wierzbicki AP (2010) A parallel multiple reference point approach for multi-objective optimization. Eur J Oper Res 205(2):390–400

    Article  MATH  MathSciNet  Google Scholar 

  • Fleischer M (2003) The measure of Pareto optima—applications to multi-objective metaheuristics. In: Evolutionary multi-criterion optimization, proceedings, vol 2632, pp 519–533

  • Fonseca C, Fleming P (1993) Genetic algorithms for multiobjective optimization: formulation. Discussion and generalization. Paper presented at the the 5th international conference on genetic algorithms, San Mateo, California, pp 416–423

  • Fonseca CM, Fleming PJ (1998) Multiobjective optimization and multiple constraint handling with evolutionary algorithms—part I: a unified formulation. IEEE Trans Syst Man Cybern Part A Syst Hum 28(1):26–37

    Article  Google Scholar 

  • Friedrich T, Horoba C, Neumann F (2009) Multiplication approximations and hypervolume indicator. Paper presented at the GECCO’ 09

  • Gembicki FW, Haimes YY (1975) Approach to performance and sensitivity multiobjective optimization—goal attainment method. IEEE Trans Automat Contr 20(6):769–771

    Article  Google Scholar 

  • Gen M, Cheng R (2000) Genetic algorithms and engineering optimization. Wiley, England

    Google Scholar 

  • Gen M, Cheng R, Lin L (2008) Network models and optimization, multiobjective genetic algorithm approach. Springer-Verlag London Limited, London

    MATH  Google Scholar 

  • Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesely, Reading

    MATH  Google Scholar 

  • Gong Y, Fukunaga A (2011) Distributed island-model genetic algorithms using heterogeneous parameter settings. Paper presented at the 2011 IEEE congress on evolutionary computation (CEC)

  • He H, Sýkora O, Salagean AM (2006) Various island-based parallel genetic algorithms for the 2-page drawing problem. Paper presented at the the IASTED international conference on parallel and distributed computing and networks

  • Heylighen F, Bollen J, Riegler A (2001) Web dictionary of cybernetics and systems. 2012, from URL= http://cleamc11.vub.ac.be/ASC/OPTIMIZATIO.html

  • Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Horn J, Nafpliotis N, Goldberg DE (1994) A Niched Pareto genetic algorithm for multiobjective optimization. Paper presented at the the 1st IEEE conference on evolutionary computation, IEEE world congress on computational intelligence, Piscataway, New Jersey, pp 82–87

  • Huband S, Hingston P, While L, Barone L (2003) An evolutionary strategy with probabilistic mutation for multi-objective optimization. Paper presented at the evolutionary computation (CEC 2003)

  • Ijiri Y (1965) Management goals and accounting for control, vol 3. North-Holland, Amsterdam

    Google Scholar 

  • Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans Syst Man Cybern Part C Appl Rev 28(3):392–403

    Article  Google Scholar 

  • Jaimes AL, Coello CAC (2007) MRMOGA: a new parallel multi-objective evolutionary algorithm based on the use of multiple resolutions. Concurr Comput Pract Exp 19(4):397–441

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. Paper presented at the neural networks, 1995. Proceedings., IEEE international conference

  • Khor EF, Tan KC, Lee TH, Goh CK (2005) A study on distribution preservation mechanism in evolutionary multi-objective optimization. Artif Intell Rev 23(1):31–56

    Article  Google Scholar 

  • Knarr MR, Goltz MN, Lamont GB, Huang J (2003) Bioremediation of perchlorate-contaminated groundwater using a multi-objective parallel evolutionary algorithm. Paper presented at the the (2003) congress on evolutionary computation (CEC’2003). Canberra, Australia, pp 1604–1611

  • Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8(2):149–172

    Article  Google Scholar 

  • Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multiobjective optimization. Evolut Comput 10(3):263–282

    Article  Google Scholar 

  • Leguizamon G, Coello CAC (2006) Boundary search for constrained numerical optimization problems in ACO algorithms. Ant Colony optimization and swarm intelligence, proceedings, vol 4150, pp 108–119

  • Loughlin DH, Ranjithan S (1997) The neighborhood constraint method: a genetic algorithm-based multiobjective optimization technique. Paper presented at the he 7th international conference on genetic algorithms, San Mateo, California, pp 666–673

  • Lounis Z, Cohn MZ (1993) Multiobjective optimization of prestressed concrete structures. J Struct Eng ASCE 119(3):794–808

    Article  Google Scholar 

  • Masud AS, Ravindran AR (2008) Multiple criteria decision making. In: Ravindaran AR (ed) Operations research and management science. Taylor & Francis Group, LLC., Raton

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Google Scholar 

  • Montano AA, Coello CAC, Mezura-Montes E (2010) MODE-LD plus SS: a novel differential evolution algorithm incorporating local dominance and scalar selection mechanisms for multi-objective optimization. 2010 IEEE congress on evolutionary computation (Cec)

  • Montaño AA, Coello CAC, Mezura-Montes E (2010) pMODE-LD+SS: an effective and efficient parallel differential evolution algorithm for multi-objective optimization. Paper presented at the PPSN’10 proceedings of the 11th international conference on parallel problem solving from nature: Part II Krak, Poland

  • Nebro AJ, Durillo JJ (2010) A study of the parallelization of the multi-objective metaheuristic MOEA/D. Paper presented at the LION 4, learning and intelligent optimization

  • Nebro AJ, Durillo JJ, Luna F, Dorronsoro B, Alba E (2009) MOCell: a cellular genetic algorithm for multiobjective optimization. Int J Intell Syst 24(7):726–746

    Article  MATH  Google Scholar 

  • Osyczka A (1985) Multicriteria optimization for engineering design. In: Gero JS (ed) Design optimization. Academic Press, London, pp 193–227

    Chapter  Google Scholar 

  • Parmee IC, Cvetković DC, Watson AH, Bonham CR (2000) Multiobjective satisfaction within an interactive evolutionary design environment. Evol Comput 8(2)

  • Rajabalipour Cheshmehgaz H, Desa M, Wibowo A (2011) A flexible three-level logistic network design considering cost and time criteria with a multi-objective evolutionary algorithm. J Intell Manuf. doi:10.1007/s10845-011-0584-7

  • Rajabalipour Cheshmehgaz H, Desa MI, Wibowo A (2012a) Effective local evolutionary searches distributed on an island model solving bi-objective optimization problems. Appl Intell. doi:10.1007/s10489-012-0375-7

  • Rajabalipour Cheshmehgaz H, Desa MI, Wibowo A (2012b) An effective model of multiple multi-objective evolutionary algorithms with the assistance of regional multi-objective evolutionary algorithms: VIPMOEAs. Appl Soft Comput. doi:10.1016/j.asoc.2012.04.027

  • Rajabalipour Cheshmehgaz H, Haron H, Kazemipour F, Desa MI (2012c) Accumulated risk of body postures in assembly line balancing problem and modeling through a multi-criteria fuzzy-genetic algorithm. Comput Ind Eng 63(2):503–512

    Article  Google Scholar 

  • Rao SS (1984) Multiobjective optimization in structural design with uncertain parameters and stochastic-processes. Aiaa Journal 22(11):1670–1678

    Article  MATH  Google Scholar 

  • Rao SS (2009) Engineering optimization, theory and practice, 4th edn. Wiley, London

    Google Scholar 

  • Repoussis PP, Tarantilis CD, Ioannou G (2009) Arc-guided evolutionary algorithm for the vehicle routing problem with time windows. IEEE Trans Evol Comput 13(3):624–647

    Article  Google Scholar 

  • Sato H, Aguirre HE, Tanaka K (2004) Local dominance using polar coordinates to enhance multiobjective evolutionary algorithms. In: Cec 2004: proceedings of the 2004 congress on evolutionary computation, vols 1 and 2, pp 188–195, 2371

  • Sato H, Aguirre HE, Tanaka K (2007a) Local dominance and local recombination in MOEAs on 0/1 multiobjective knapsack problems. Eur J Oper Res 181(3):1708–1723

    Article  MATH  Google Scholar 

  • Sato H, Aguirre HE, Tanaka K (2007b) Local dominance including control of dominance area of solutions in MOEAs. In: 2007 IEEE symposium on computational intelligence in multi-criteria decision making, pp 310–317, 402

  • Schaffer J (1989) Multiple objective optimization with vector evaluted genetic algorithms. Paper presented at the the 1st international conference on genetic algorithms, Hillsdale, NJ

  • Schaffer JD (1984a) Multiple objective optimization with vector evaluated genetic algorithms. Vanderbilt University, Nashville

    Google Scholar 

  • Schaffer JD (1984b) Some experiments in machine learning using vector evaluted genetic algorithms. Vanderbilt University, Nashville

    Google Scholar 

  • Simaria AS, Vilarinho PM (2004) A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II. Comput Ind Eng 47(4):391–407

    Article  Google Scholar 

  • Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms. Springer, Berlin

    MATH  Google Scholar 

  • Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Article  Google Scholar 

  • Streichert F, Ulmer H, Zell A (2005) Parallelization of multi-objective evolutionary algorithms using clustering algorithms. Evol Multi-Criterion Optim 3410:92–107

    Article  Google Scholar 

  • Talbi E-G (2009) Metaheuristics: from design to implementation. Wiley, Hoboken

    Book  Google Scholar 

  • Talbi EG, Mostaghim S, Okabe T, Ishibuchi H, Rudolph G, Coello CAC (2008) Parallel approaches for multiobjective optimization. Multiobjective Optim Interact Evol Approaches 5252:349–372, 470

    Google Scholar 

  • Toro Fd, Ortega J, Fern\(\prime \)andez J, D\(\prime \)ıaz A (2002) PSFGA: a parallel genetic algorithm for multiobjective optimization. Paper presented at the 10th Euromicro workshop on parallel, distributed and network based processing

  • Tseng CH, Lu TW (1990) Minimax multiobjective optimization in structural design. Int J Numer Methods Eng 30(6):1213–1228

    Article  MATH  Google Scholar 

  • Watanabe S, Hiroyasu T, Miki M (2001) Parallel evolutionary multi-criterion optimization for mobile telecommunication networks optimization. Paper presented at the evolutionary methods for design, optimization and control with applications to industrial problems, EUROGEN’ 2001, Athens, Greece, pp 167–172

  • While L, Bradstreet L, Barone L (2012) A fast way of calculating exact hypervolumes. IEEE Trans Evol Comput 16(1):86–95

    Article  Google Scholar 

  • While L, Hingston P, Barone L, Huband S (2006) A faster algorithm for calculating hypervolume. IEEE Trans Evol Comput 10(1):29–38

    Article  Google Scholar 

  • Zadeh LA (1963) Optimality and non-scalar-valued performance criteria. IEEE Trans Automat Contr Ac 8(1):59

    Google Scholar 

  • Zaharie D, Petcu D, Panica S (2008) A hierarchical approach in distributed evolutionary algorithms for multiobjective optimization. Large-Scale Sci Comput 4818(516–523):755

    Google Scholar 

  • Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algrithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  • Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Swiss Federal Institute of Technology Zurich, Zurich

    Google Scholar 

  • Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

  • Zitzler E, Kunzli S (2004) Indicator-based selection in multiobjective search. Parallel Probl Solving Nat Ppsn Viii 3242:832–842

    Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. Paper presented at the EUROGEN 2001: evolutionary methods for design, optimization and control with applications to industrial problems

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  • Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Rajabalipour Cheshmehgaz.

Additional information

In Memory of a beautiful girl, Siran Yeganeh who has sadly died from her injuries in an elementary school fire accident in the northwestern Iranian village of Sheenabad - by Hossein Rajabalipour C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheshmehgaz, H.R., Haron, H. & Sharifi, A. The review of multiple evolutionary searches and multi-objective evolutionary algorithms. Artif Intell Rev 43, 311–343 (2015). https://doi.org/10.1007/s10462-012-9378-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-012-9378-3

Keywords

Navigation