Skip to main content
Log in

Performance evaluation of wavelet, ridgelet, curvelet and contourlet transforms based techniques for digital image denoising

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Digital images always inherit some extent of noise in them. This noise affects the information content of the image. Removal of this noise is very important to extract useful information from an image. However noise cannot be eliminated, it can only be minimized due to overlap between the signal and noise characteristics. This paper reviews image denoising algorithms which are based on wavelet, ridgelet, curvelet and contourlet transforms and benchmarks them based on the published results. This article presents the techniques, parameters used for benchmarking, denoising performance on standard images and a comparative analysis of the same. This paper highlights various trends in denoising techniques, based on which it has been concluded that a single parameter Peak Signal to Noise Ratio (PSNR) cannot exactly represent the denoising performance until other parameters are consistent. A new robust parameter Performance measure ‘P’ is presented as a measure of denoising performance on the basis of a new concept named Noise Improvement Rectangle followed by its analysis. The results of the published algorithms are presented in tabular format in terms of PSNR and P which facilitates readers to have a bird’s eye view of the research work in the field of image denoising and restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alparone L, Baronti S, Garzelli A, Nencini F (2006) The curvelet transform for fusion of very-high resolution multi-spectral and panchromatic images. In: Proceedings of the 25th EARSeL symposium, Porto, Portugal, Millpress Science Publishers, Netherlands

  • Bala E, Ertüzün A (2005) A multivariate thresholding technique for image denoising using multiwavelets EURASIP. J Appl Signal Process 2005:1205–1211

    Article  MATH  Google Scholar 

  • Bo C, Zexun G, Yang Y, Tianshuang S (2007) Dual-tree Complex Wavelets Transforms for Image Denoising. In: Eighth ACIS international conference on software engineering, artificial intelligence, networking, and parallel/distributed computing, Qingdao, China, IEEE, pp 70–74

  • Bose T (2004) Digital signal and image processing. Wiley, London

    Google Scholar 

  • Buades A, Coll B, Morel JM (2004) On image denoising methods. Technical Note, CMLA (Centre de Mathematiques et de Leurs Applications)

  • Buades A, Coll B, Morel JM (2005a) Image denoising by non-local averaging. In: Proceedings of IEEE international conference of acoustics, speech end signal processing, pp 25–28

  • Buades A, Coll B, Morel JM (2005b) A Non-local Algorithm for Image Denoising. In: IEEE computer society conference on computer vision and pattern recognition, CVPR, IEEE, pp 60–65

  • Candes EJ (1998) Ridgelets: theory and applications. Stanford University, Stanford

    Google Scholar 

  • Candès EJ, Donoho DL (2001) Curvelets and curvilinear integrals. J Approx Theory 113:59–90

    Article  MathSciNet  MATH  Google Scholar 

  • Carre P, Andres E (2004) Discrete analytical ridgelet transform. Signal Process 84:2165–2173

    Article  MATH  Google Scholar 

  • Castleman KR (1996) Digital image processing. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  • Celik MU, Sharma G, Tekalp AM (2003) Gray-level-embedded lossless image compression. Signal Process Image Commun 18:443–454

    Article  Google Scholar 

  • Chang SG, Yu B, Vetterli M (2000a) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9:1532–1546

    Article  MathSciNet  MATH  Google Scholar 

  • Chang SG, Yu B, Vetterli M (2000b) Wavelet thresholding for multiple noisy image copies. IEEE Trans Image Process 9:1631–1635

    Article  Google Scholar 

  • Chen GY, Kégl B (2007) Image denoising with complex ridgelets. Pattern Recognit 40:578–585

    Article  MATH  Google Scholar 

  • Crouse MS, Nowak RD, Baraniuk RG (1998) Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans Signal Process 46:886–902

    Article  MathSciNet  Google Scholar 

  • da Cunha AL, Zhou J, Do MN (2006) The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process 15:3089–3101

    Article  Google Scholar 

  • Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16:2080–2095

    Article  MathSciNet  Google Scholar 

  • Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41:909–996

    Article  MathSciNet  MATH  Google Scholar 

  • Do MN, Vetterli M (2000) Orthonormal finite ridgelet transform for image compression. In: International conference on image processing, Vancouver, BC, Canada, IEEE, pp 367–370

  • Do MN, Vetterli M (2003) The finite ridgelet transform for image representation. IEEE Trans Image Process 12:16–28

    Article  MathSciNet  MATH  Google Scholar 

  • Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14:2091–2106

    Article  MathSciNet  Google Scholar 

  • Donoho D (1998) Digital ridgelet transform via rectopolar coordinate transform Stanford University, Stanford, CA, Technical Report, 12:854–865

  • Donoho DL (1993) Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data. In: Proceedings of symposia in applied mathematics. American Mathematical Society, Providence, pp 173–205

  • Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41:613–627

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL (2000) Orthonormal ridgelets and linear singularities. SIAM J Math Anal 31:1062–1099

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL, Flesia AG (2003) Digital ridgelet transform based on true ridge functions. Stud Comput Math 10:1–30

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL, Johnstone JM (1994) Ideal spatial adaptation by wavelet shrinkage. Biom 81:425–455

    MathSciNet  MATH  Google Scholar 

  • Candès EJ, Donoho DL (1999) Ridgelets: a key to higher-dimensional intermittency? Philos Trans R Soc Lond Ser A Math Phys Eng Sci 357:2495–2509

    Article  MathSciNet  MATH  Google Scholar 

  • Easley GR, Labate D, Colonna F (2009) Shearlet-based total variation diffusion for denoising. IEEE Trans Image Process 18:260–268

    Article  MathSciNet  Google Scholar 

  • Eslami R, Radha H (2004) Wavelet-based contourlet transform and its application to image coding. In: International conference on image processing, ICIP, Singapore, IEEE, pp 3189–3192

  • Firoiu I, Isar A, Isar D (2010) A Bayesian approach of wavelet based image denoising in a hyperanalytic multi-wavelet context. WSEAS Trans Signal Process 6:155–164

    MATH  Google Scholar 

  • Flesia AG, Hel-Or H, Averbuch A, Candes EJ, Coifman RR, Donoho DL (2003) Digital implementation of ridgelet packets. Stud Comput Math 10:31–60

    Article  MathSciNet  MATH  Google Scholar 

  • Fletcher AK, Ramchandran K, Goyal VK (2002) Wavelet Denoising by Recursive Cycle Spinning. In: International conference on image processing, IEEE, pp 873–876

  • Gao HY (1998) Wavelet shrinkage denoising using the non-negative garrote. J Comput Graph Stat 7:469–488

    MathSciNet  Google Scholar 

  • Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  • Jähne B (1995) Digital image processing: concepts. algorithms and scientific applications, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  • Jain AK (1989) Fundamentals of digital image processing. Prentice-Hall Inc., Englewood Cliffs

    MATH  Google Scholar 

  • Jayaraman S, Esakkirajan S, Veerakumar T (2010) Digital image processing, 3rd edn. Tata McGraw Hill Education private limited, New Delhi

  • Joshi MA (2006) Digital image processing: an algorithmic approach. PHI Learning Pvt. Ltd, New Delhi

    Google Scholar 

  • Law KL, Do MN (2011) Multidimensional filter bank signal reconstruction from multichannel acquisition. IEEE Trans Image Process 20:317–326

    Article  MathSciNet  Google Scholar 

  • Liu G, Zeng X, Liu Y (2012) Image denoising by random walk with restart Kernel and non-subsampled contourlet transform. IET Signal Process 6:148–158

    Article  MathSciNet  Google Scholar 

  • Liu Y-X, Law N-F, Siu WC (2014) Patch based image denoising using the finite ridgelet transform for less artifacts. J Vis Commun Image Represent 25:1006–1017. doi:10.1016/j.jvcir.2014.02.018

    Article  Google Scholar 

  • Luisier F, Blu T, Unser M (2007) A new SURE approach to image denoising: interscale orthonormal wavelet thresholding. IEEE Trans Image Process 16:593–606

    Article  MathSciNet  Google Scholar 

  • Ma J, Plonka G (2007) Combined curvelet shrinkage and nonlinear anisotropic diffusion. IEEE Trans Image Process 16:2198–2206

    Article  MathSciNet  Google Scholar 

  • Matalon B, Elad M, Zibulevsky M (2005) Image denoising with the contourlet transform. In: Proceedings of SPARSE, Rennes, France

  • Mignotte M (2007) A post-processing deconvolution step for wavelet-based image denoising methods. IEEE Signal Process Lett 14:621–624

    Article  Google Scholar 

  • Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21:4695–4708

    Article  MathSciNet  Google Scholar 

  • Mohideen K, Perumal A, Krishnan N, Sathik M (2011) Image denoising and enhancement using multiwavelet with hard threshold in digital mammographic images. Int Arab J e Technol 2:49–55

    Google Scholar 

  • Moorthy AK, Bovik AC (2010) A two-step framework for constructing blind image quality indices. IEEE Signal Process Lett 17:513–516

    Article  Google Scholar 

  • Moorthy AK, Bovik AC (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process 20:3350–3364

    Article  MathSciNet  Google Scholar 

  • Moulin P, Liu J (1999) Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors. IEEE Trans Inf Theory 45:909–919

    Article  MathSciNet  MATH  Google Scholar 

  • Oppenheim AV, Schafer RW, Buck JR (1989) Discrete-time signal processing, vol 2. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Palakkal S, Prabhu K (2012) Poisson image denoising using fast discrete curvelet transform and wave atom. Signal Process 92:2002–2017

    Article  Google Scholar 

  • Parlewar PK, Bhurchandi KM (2013) A 4-quadrant curvelet transform for denoising digital images. Int J Autom Comput 10:217–226

    Article  Google Scholar 

  • Pitas L, Venetsanopoulos AN (1990) Nonlinear digital filters: principles and applications, vol 84. Springer, Berlin

    Book  MATH  Google Scholar 

  • Po D-Y, Do MN (2006) Directional multiscale modeling of images using the contourlet transform. IEEE Trans Image Process 15:1610–1620

    Article  MathSciNet  Google Scholar 

  • Pratt WK (1991) Digital image processing, 3rd edn. Wiley, London

    MATH  Google Scholar 

  • Rabbani H, Gazor S (2010) Image denoising employing local mixture models in sparse domains. IET Image Process 4:413–428

    Article  Google Scholar 

  • Rao Y, Chen L (2011) An efficient contourlet transform-based algorithm for video enhancement. J Inf Hiding Multimed Signal Process 2:282–293

    Google Scholar 

  • Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21:3339–3352

    Article  MathSciNet  Google Scholar 

  • Selesnick IW, Baraniuk RG, Kingsbury NC (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22:123–151

    Article  Google Scholar 

  • Sendur L, Selesnick IW (2002) Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans Signal Process 50:2744–2756

    Article  Google Scholar 

  • Shen X, Wang K, Guo Q (2013) Local thresholding with adaptive window shrinkage in the contourlet domain for image denoising Science China. Inf Sci 56:1–9

    Google Scholar 

  • Shuyuan Y, Wang M, Linfang Z, Zhiyi W (2013) Image Noise Reduction via Geometric Multiscale Ridgelet Support Vector Transform and Dictionary Learning. IEEE Trans Image Process 22:4161–4169. doi:10.1109/TIP.2013.2271114

    Article  MathSciNet  Google Scholar 

  • Starck JL, Candès EJ, Donoho DL (2002) The curvelet transform for image denoising. IEEE Trans Image Process 11:670–684

    Article  MathSciNet  MATH  Google Scholar 

  • Starck JL, Donoho DL, Candès EJ (2003a) Astronomical image representation by the curvelet transform. Astron Astrophys Berl 398:785–800

    Article  Google Scholar 

  • Starck JL, Murtagh F, Candes EJ, Donoho DL (2003b) Gray and color image contrast enhancement by the curvelet transform. IEEE Trans Image Process 12:706–717

    Article  MathSciNet  MATH  Google Scholar 

  • Vetterli M, Herley C (1992) Wavelets and filter banks: theory and design. IEEE Trans Signal Process 40:2207–2232

    Article  MATH  Google Scholar 

  • Wang X-Y, Yang H-Y, Zhang Y, Fu Z-K (2013) Image denoising using SVM classification in nonsubsampled contourlet transform domain. Inf Sci 246:155–176

    Article  MathSciNet  MATH  Google Scholar 

  • Wang XT, Shi GM, Niu Y, Zhang L (2011) Robust adaptive directional lifting wavelet transform for image denoising. IET Image Process 5:249–260

    Article  MathSciNet  Google Scholar 

  • Wu K, Zhang X, Ding M (2014) Curvelet based nonlocal means algorithm for image denoising. AEU Int J Electron Commun 68:37–43

    Article  Google Scholar 

  • Yan S, Xiaoyuan Y, Yuhua G (2014) Translation Invariant Directional Framelet Transform Combined With Gabor Filters for Image Denoising. IEEE Trans Image Process 23:44–55. doi:10.1109/TIP.2013.2285595

    Article  MathSciNet  Google Scholar 

  • Ye P, Doermann D (2012) No-reference image quality assessment using visual codebooks. IEEE Trans Image Process 21:3129–3138

    Article  MathSciNet  Google Scholar 

  • Yin M, Liu W, Zhao X, Guo Q-W, Bai R-F (2013) Image denoising using trivariate prior model in nonsubsampled dual-tree complex contourlet transform domain and non-local means filter in spatial domain. Opt Int J Light Electron Opt 124:6896–6904

    Article  Google Scholar 

  • Zhou W, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612. doi:10.1109/TIP.2003.819861

    Article  Google Scholar 

  • Zhou Y, Wang J (2012) Image denoising based on the symmetric normal inverse Gaussian model and non-subsampled contourlet transform. IET Image Process 6:1136–1147

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Milind Kamble.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, V.M., Parlewar, P., Keskar, A.G. et al. Performance evaluation of wavelet, ridgelet, curvelet and contourlet transforms based techniques for digital image denoising. Artif Intell Rev 45, 509–533 (2016). https://doi.org/10.1007/s10462-015-9453-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-015-9453-7

Keywords

Navigation