Abstract
The increasing number of images on the Web and other information environments, needs efficient management and suitable retrieval especially by computers. Image annotation is a process which produces words for a digital image based on its content. Users prefer an image search based on text queries and keywords which has increased the use of image annotation. In this paper, we discuss the applicability of structured sparse representations at image annotation. First the components of image annotation and sparse representation are reviewed. Then, we survey the structure of sparse representation based on the image annotation algorithms. Next, the comparison of algorithm has been presented. Finally the paper concludes with some major challenges and open issues in image annotation using structured sparse representations.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Argyriou A, Evgeniou T, Pontil M (2008) Convex multi-task feature learning. Mach Learn J 73:243–272
Bach F (2008) Consistency of the group LASSO and multiple kernel learning. J Mach Learn Res 9:1179–1225
Bach F (2009) Parse methods for machine learning. In: 23rd annual conference on neural information processing systems (NIPS), Willow project , INRIA—Ecole Normale Superieure NIPS Tutorial, Vancouver, December
Bach F, Jenatton R, Mairal J, Obozinski G (2011) Convex optimization with sparsity-inducing norms. . In: Sra S, Nowozin S, Wright SJ (eds) Optimization for machine learning. MIT Press, Cambridge
Barnard K, Duygulu P, Forsyth D, De Freitas N, Blei D, Jordan M (2003) Matching words and pictures. J Mach Learn Res 3:1107–1135
Bruckstein A, Donoho D, Elad M (2009) From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev 51(1):3481
Candes E, Wakin M (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30
Chaira T, Ray AK (2005) Fuzzy measures for color image retrieval. Fuzzy Sets Syst 150(3):545–560
Chen S, Donoho D, Saunders M (1999) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20(1):33–61
Chen Z, Chi Z, Hong F, Feng D (2013) Multi-instance multi-label image classification: a neural approach. Neurocomputing 99:298–306
Chen Z, Fu H, Chi Z, Feng D (2010) A neural network model with adaptive structure for image annotation. In: 11th international conference control, automation, robotics and vision, Singapore, 7–10th December 2010
Cheng H, Lu Z, Yang L, Chen X (2012) Sparse representation and learning in visual recognition: theory and applications. Sig Process 93(6):1408–1425
Chua T, Tang J, Hong R, Li H, Luo Z, Zheng Y (2009) Nus-wide: a real-world web image database from national university of singapore. In: ACM international conference on image and video retrieval, 2009
Dai D, Yang W (2011) Satellite image classification via two-layer sparse coding with biased image representation. IEEE Geosci Remote Sens Lett 8(1):173–176
Dasiopoulou S, Doulaverakis C, Mezaris V, Kompatsiaris I, Strintzis MG (2007) An ontology-based framework for semantic image analysis and retrieval. In: Zhang Y-J (ed) Semantic-based visual information retrieval. Idea Group Inc, Canada
Datta R, Joshi D, Li J, Wang J (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv (CSUR) 40(2):5
Del Frate F, Pacifici F, Schiavon G, Solimini C (2007) Use of neural networks for automatic classification from high-resolution images. IEEE Trans Geosci Remote Sens 45(4):800–809
Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: IEEE computer vision and pattern recognition (CVPR), pp 248–255
Deselaers T, Mller H, Clough P, Ney H, Lehmann TM (2007) The CLEF 2005 automatic medical image annotation task. Int J Comput Vis 74(1):51–58
Dong W, Zhang L, Shi G (2011) Centralized sparse representation for image restoration. In: ICCV, 2011
Donoho D, Elad M (2003) Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proc Nat Acad Sci 100(5):2197
Duygulu P, Barnard K, De Freitas J, Forsyth D (2002) Object recognition as machine translation:learning a lexicon for a fixed image vocabulary. In: Proceedings of European conferenceon computer vision (ECCV), vol 2353, pp 97–112
Duygulu P, Barnard K, De Freitas J, Forsyth D (2002) Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Proceedings of ECCV, 2002, pp 97–112
Eldar YC, Kutyniok G (2012) Compressed sensing: theory and applications. Cambridge University Press, Cambridge
Elhamifar E, Vidal R (2011) Robust classification using structured sparse representation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1873–1879
Everingham M, Gool LV, Williams CKI, Winn J, Zisserman A (2010) The PASCAL visual object classes (VOC) challenge. Int J Comput Vis 88(2):303–338
Figueiredo M, Nowak R, Wright S (2007) Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J Sel Top Signal Process 1(4):586597
Gao S, Chia L-T, Tsang I-H (2011) Multi-layer group sparse coding—for concurrent image classification and annotation. In: CVPR, 2011
Goh K-S, Chang EY, Li B (2005) Using one-class and two-class SVMs for multiclass image annotation. IEEE Trans Knowl Data Eng 17(10):1333–1346
Guillaumin M, Mensink T, Verbeek J, Schmid C (2009) Tagprop: discriminative metric learning in nearest neighbor models for image auto-annotation. In: IEEE 12th international conference on computer vision, pp 309–316
Han M, Zhu X, Yao W (2012a) Remote sensing image classification based on neural network ensemble algorithm. Neurocomputing 78(1):133–138
Han Y, Wu F, Tian Q, Zhuang Y (2012b) Image annotation by input-output structural grouping sparsity. IEEE Trans Image Process 21(6):3066–3079
He SL, Chen H, Carin L (2010) Tree-structured compressive sensing with variational Bayesian analysis. IEEE Signal Process Lett 17(3):233–236
Hua Zh, Wang X, Liu Q, Lu H (2005) Semantic knowledge extraction and annotation for web images. In: Proceedings of the 13th annual ACM international conference on Multimedia, Hilton, Singapore, November 06–11, 2005
Huang J-B, Yang M-H (2010) Fast sparse representation with proto-types. In: CVPR, 2010
Huang J, Huang X, Metaxas D (2009) Learning with dynamic group sparsity. In: Proceedings of international conference computer vision, 2009, pp 64–71
Huang J, Zhang T (2009) The benefit of group sparsity. Technical report, Rutgers University
Huang J, Zhang T (2010) The benefit of group sparsity. Ann Stat 38(4):19782004
Huang J, Zhang T, Metaxas D (2009) Learning with structured sparsity. In: ICML, 2009
Huiskes M, Thomee B, Lew M (2010) New trends and ideas in visual concept detection: the MIR Flickr retrieval evaluation initiative. In: Proceedings of ACM MIR, 2010
Jeong S, Won CS, Gray RM (2004) Image retrieval using color histograms generated by Gauss mixture vector quantization. Comput Vis Image Underst 94(13):4466
Jia K, Wang X, Tang X (2011) Optical flow estimation using learned sparse model. In: ICCV, 2011
Kalpathy-Cramer J, de Herrera AGS, Demner-Fushman D, Antani S, Bedrick S, Mller H (2015) Evaluating performance of biomedical image retrieval systems—an overview of the medical image retrieval task at ImageCLEF 2004–2013. Comput Med Imag Graphics 39:55–61
Khajehnejad MA, Xu W, Avestimehr AS, Hassibi B (2009) Weighted L1 minimization for sparse recovery with prior information. In: Proceedings of international symposium on information theory, 2009
Li L-J, Zhu J, Su H, Xing EP, Fei-Fei L (2013) Multi-level structured image coding on high-dimensional imagerepresentation. In: Computer vision ACCV 2012. Springer, Berlin, pp 147–161
Liu Y, Zhang D, Lu G, Ma W (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recognit 40(1):262282
Liu Y, Zhang D, Lu G (2008) Region-based image retrieval with high-level semantics using decision tree learning. Pattern Recogn 41(8):728–741
Liu X, Cheng B, Yan S, Tang J, Chua TS, Jin H (2009) Label to region by bi-layer sparsity priors. In: MM09: proceedings of the seventeen ACM international conference on multimedia. ACM, New York, pp 115–124
Long F, Zhang H, Feng DD (2003) Fundamentals of content-based image retrieval. In: Feng DD, Siu WC, Zhang HJ (eds) Multimedia information retrieval and management: technological fundamentals and applications. Springer, Berlin, pp 1–26
Lotfi A, maihami V, Yaghmaee F (2014) Wood image annotation using gabor texture feature. Int J Mechatron Electr Comput Technol 4(13):1508–1523
Loui A, Luo J, Chang S-F, Ellis D, Jiang W, Kennedy L, Lee K, Yanagawa A (2007) Kodak’s consumer video benchmark data set: concept definition and annotation. In: Proceedings of the international workshop on Workshop on multimedia information retrieval. ACM, pp 245–254
Mairal J, Yu B (2013) Supervised feature selection in graphs with path coding penalties and network flows. J Mach Learn Res 14(1):2449–2485
Mller H, Deselaers T, Deserno T, Clough P, Kim E, Hersh W (2007) A overview of the ImageCLEFmed 2006medical retrieval and medical annotation tasks. In: Evaluation of multilingual and multi-modal information retrieval. Springer, Berlin, pp 595–608
Park SB, Lee JW, Kim SK (2004) Content-based image classification using a neural network. Pattern Recogn Lett 25:287–300
Qi X, Han Y (2007) Incorporating multiple SVMs for automatic image annotation. Pattern Recogn 40(2):728–741
Rigamonti R, Brown M, Lepetit V (2011) Are sparse representations really relevant for image classification? In: CVPR, 2011
Russell BC, Torralba A, Murphy KP, Freeman WT (2008) LabelMe: a database and web-based tool for image annotation. Int J Comput Vis 77(1–3):157–173
Shah B, Benton R, Wu Z, Raghavan V (2006) Automatic and semi-automatic annotation techniques for image. In: Zhang CY-J (ed) Semantic-based visual information retrieval. Idea Group Publishing, Hershey
Shin Y, Kim Y, Kim EY (2010) Automatic textile image annotation by predicting emotional concepts from visual features. Image Vis Comput 28(3):526–537
Shotton J, Winn J, Rother C, Criminisi A (2006) Textonboost: joint appearance,shape and context modeling for mulit-class object recognition and segmentation. In: European conference on computer vision
Soltani-Farani A, Rabiee HR (2015) When pixels team up: spatially-weighted sparse coding for hyperspectral image classification. IEEE Geosci Remote Sens Lett 12(1):107–111
Stojnic M, Parvaresh F, Hassibi B (2009) On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Trans Signal Process 57(8):3075–3085
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc 58:267–288
Tropp J (2004) Greed is good: algorithmic results for sparse approximation. IEEE Trans Inf Theory 50(10):2231–2242
Wagner A, Wright J, Ganesh A, Zhou Z, Mobahi H, Ma Y (2012) Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans Pattern Anal Mach Intell 34(2):372–386
Wang F (2011) A survey on automatic image annotation and trends of the new age. Proc Eng 23:434438
Wang M, Li F, Wang M (2012) Collaborative visual modeling for automatic image annotation via sparse model coding. Neurocomputing 95:22–28
Wang G, Zhang S, Xie H, Metaxas D, Lixu G (2015) A homotopy-based sparse representation for fast and accurate shape prior modeling in liver surgical planning. Med Image Anal 19(1):176–186
Wang C, Yan S, Zhang L, Zhang H-J (2009) Multi-label sparse coding for automatic image annotation. In: Proceedings of IEEE international conference computer vision and pattern recognition, Florida, USA, pp 1643–1650
Wong RCF, Leung CHC (2008) Automatic semantic annotation of real-world web images. IEEE PAMI 30(11):1933–1944
Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227
Xu Y, Zhang D, Yang J, Yang J-Y (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262
Xu Y, Zuo W, Fan Z (2012) Supervised sparse representation method with a heuristic strategy and face recognition experiments. Neurocomputing 79:125–131
Xu Y, Zhu Q, Fan Z, Zhang D, Mi J, Lai Z (2013) Using the idea of the sparse representation to perform coarse to fine face recognition. Inf Sci 238:138–148
Xu W, Khajehnejad A, Avestimehr S, Hassibi B (2010) Breakingthrough the thresholds: an analysis for iterative reweighted L1 minimization via the Grassmann angle framework. In: Proceedings of international conference on acoustics, speech and signal processing (ICASSP), 2010
Yang Y, Huang Z, Yang Y, Liu J, Shen HT, Luo J (2012) Local image tagging via graph regularized joint group sparsity. Pattern Recogn 46(5):1358–1368
Yuan Y, Fei W, Shao J, Zhuang Y (2013) Image annotation by semi-supervised cross-domain learning with group sparsity. J Vis Commun Image Represent 24(2):95–102
Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B 68(1):49–67
Zha Z et al (2008) Joint multi-label multi-instance learning for image classification. In: Proceedings of the CVPR, 2008
Zhang D, Islam MM, Lu G (2012) A review on automatic image annotation techniques. Pattern Recognit 45:346–362
Zhang S, Huang J, Li H, Metaxas DN (2012) Automatic image annotation and retrieval using group sparsity. IEEE Trans Syst Man Cybern Part B Cybern 42(3):838–849
Zhang H, Li J, Huang Y, Zhang L (2014) A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2056–2065
Zhang S, Huang J, Huang Y, Yu Y, Li H, Metaxas D (2010) Automatic image annotation using group sparsity. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 3312–3319
Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of the ICCV, 2011
Zhao Z-Q, Glotin H, Xie Z, Gao J, Wu X (2012) Cooperative sparse representation in two opposite directions for semi-supervised image annotation. IEEE Trans Image Process 21(9):4218–4231
Zhao Y, Zhao Y, Zhu Z, Pan J-S (2008) A novel image annotation scheme based on neural network. In: Eighth international conference on intelligent systems design and applications, 2008
Zheng Y, Gee J (2010) Estimation of image bias field with sparsity constraints. In: CVPR, 2010
Zhou T, Tao D, Wu X (2011) Manifold elastic net: a unified framework for sparse dimension reduction. Data Min Knowl Disc 22(3):340–371
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Maihami, V., Yaghmaee, F. A review on the application of structured sparse representation at image annotation. Artif Intell Rev 48, 331–348 (2017). https://doi.org/10.1007/s10462-016-9502-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10462-016-9502-x