Skip to main content
Log in

Recent developments in human gait research: parameters, approaches, applications, machine learning techniques, datasets and challenges

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Human gait provides a way of locomotion by combined efforts of the brain, nerves, and muscles. Conventionally, the human gait has been considered subjectively through visual observations but now with advanced technology, human gait analysis can be done objectively and empirically for the better quality of life. In this paper, the literature of the past survey on gait analysis has been discussed. This is followed by discussion on gait analysis methods. Vision-based human motion analysis has the potential to provide an inexpensive, non-obtrusive solution for the estimation of body poses. Data parameters for gait analysis have been discussed followed by preprocessing steps. Then the implemented machine learning techniques have been discussed in detail. The objective of this survey paper is to present a comprehensive analysis of contemporary gait analysis. This paper presents a framework (parameters, techniques, available database, machine learning techniques, etc.) for researchers in identifying the infertile areas of gait analysis. The authors expect that the overview presented in this paper will help advance the research in the field of gait analysis. Introduction to basic taxonomies of human gait is presented. Applications in clinical diagnosis, geriatric care, sports, biometrics, rehabilitation, and industrial area are summarized separately. Available machine learning techniques are also presented with available datasets for gait analysis. Future prospective in gait analysis are discussed in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggarwal J, Cai Q (1999) Human motion analysis: a review. Comput Vis Image Underst 73(3):428–440. http://www.sciencedirect.com/science/article/pii/S1077314298907445. doi:10.1006/cviu.1998.0744

  • Aggarwal JK, Park S (2004) Human motion: modeling and recognition of actions and interactions. In: Proceedings of 2nd international symposium on 3D data processing, visualization and transmission, 2004 (3DPVT, 2004). IEEE, pp 640–647

  • Aggarwal JK, Cai Q, Liao W, Sabata B (1994) Articulated and elastic non-rigid motion: a review. In: Proceedings of the 1994 IEEE workshop on motion of non-rigid and articulated objects, 1994. IEEE, pp 2–14

  • Alaqtash M, Yu H, Brower R, Abdelgawad A, Sarkodie-Gyan T (2011) Application of wearable sensors for human gait analysis using fuzzy computational algorithm. Eng Appl Artif Intell 24(6):1018–1025

    Article  Google Scholar 

  • Andriacchi TP, Alexander EJ (2000) Studies of human locomotion: past, present and future. J Biomech 33(10):1217–1224

    Article  Google Scholar 

  • Auvinet B, Berrut G, Touzard C, Moutel L, Collet N, Chaleil D, Barrey E (2002) Reference data for normal subjects obtained with an accelerometric device. Gait Posture 16(2):124–134

    Article  Google Scholar 

  • Baker R (2006) J Neuroeng Rehabil 3(1):1

  • Bartlett R (2006) Artificial intelligence in sports biomechanics: new dawn or false hope? J Sports Sci Med 5(4):474

    Google Scholar 

  • Barton G, Lisboa P, Lees A, Attfield S (2007) Gait quality assessment using self-organising artificial neural networks. Gait Posture 25(3):374–379

    Article  Google Scholar 

  • Beauchet O, Allali G, Berrut G, Hommet C, Dubost V, Assal F (2008) Gait analysis in demented subjects: interests and perspectives. Neuropsychiatr Dis Treat 4(1):155

    Article  Google Scholar 

  • Begg R, Kamruzzaman J (2005) A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. J Biomech 38(3):401–408

    Article  Google Scholar 

  • Begg R, Kamruzzaman J (2006) Neural networks for detection and classification of walking pattern changes due to ageing. Aust Phys Eng Sci Med 29(2):188–195

    Article  Google Scholar 

  • Boulgouris NV, Chi ZX (2007) Gait recognition using radon transform and linear discriminant analysis. IEEE Trans Image Process 16(3):731–740

    Article  MathSciNet  Google Scholar 

  • Buxton H (2003) Learning and understanding dynamic scene activity: a review. Image Vis Comput 21(1):125–136

    Article  Google Scholar 

  • Chai Y, Ren J, Han W, Li H (2011) Human gait recognition: approaches, datasets and challenges. In: 4th International Conference on Imaging for Crime Detection and Prevention 2011 (ICDP 2011). IET, pp 1–6

  • Chau T (2001) A review of analytical techniques for gait data. part 2: neural network and wavelet methods. Gait Posture 13(2):102–120

    Article  Google Scholar 

  • Chen X, Zhao Y, Zhang Y-Q, Harrison R (2007) Combining SVM classifiers using genetic fuzzy systems based on AUC for gene expression data analysis. In: Mǎndoiu I, Zelikovsky A (eds) Bioinformatics research and applications: third international symposium, ISBRA 2007, Atlanta, GA, USA, May 7-10 2007, proceedings. Springer, Berlin, pp 496–505. doi:10.1007/978-3-540-72031-7_45

  • Choi S, Youn IH, LeMay R, Burns S, Youn JH (2014) Biometric gait recognition based on wireless acceleration sensor using k-nearest neighbor classification. In: 2014 international conference on computing, networking and communications (ICNC). IEEE, pp 1091–1095

  • Cimolin V, Galli M (2014) Summary measures for clinical gait analysis: a literature review. Gait Posture 39(4):1005–1010

    Article  Google Scholar 

  • Collins RT, Gross R, Shi J (2002) Silhouette-based human identification from body shape and gait. In: Proceedings of fifth IEEE international conference on automatic face and gesture recognition, 2002. IEEE, pp 366–371

  • Cuntoor N, Kale A, Chellappa R (2003) Combining multiple evidences for gait recognition. In: Proceedings of 2003 IEEE international conference on acoustics, speech, and signal processing, 2003 (ICASSP’03), vol. 3. IEEE, pp III–33

  • De Silva B, Natarajan A, Motani M, Chua KC (2008) A real-time exercise feedback utility with body sensor networks. In: 5th international summer school and symposium on medical devices and biosensors, 2008. ISSS-MDBS 2008. IEEE, pp 49–52

  • Deng Z, Zhai M, Chen L, Liu Y, Muralidharan S, Roshtkhari MJ, Mori G (2015) Deep structured models for group activity recognition. arXiv preprint arXiv:1506.04191

  • For biometrics C, security research (2016) Casia gait dataset. http://www.cbsr.ia.ac.cn

  • Frenkel-Toledo S, Giladi N, Peretz C, Herman T, Gruendlinger L, Hausdorff JM (2005) Effect of gait speed on gait rhythmicity in Parkinson’s disease: variability of stride time and swing time respond differently. J Neuroeng Rehabil 2(1):1

  • Fuhrer M (2014) Disability inclusive disaster risk reduction. Planet Risk 2(3):1–35

  • Fukuchi RK, Eskofier BM, Duarte M, Ferber R (2011) Support vector machines for detecting age-related changes in running kinematics. J Biomech 44(3):540–542

    Article  Google Scholar 

  • Gaba I, Ahuja SP (2014) Gait analysis for identification by using BPNN with LDA and MDA techniques. In: 2014 IEEE international conference on MOOC, innovation and technology in education (MITE). IEEE, pp 122–127

  • Gowsikhaa D, Abirami S, Baskaran R (2014) Automated human behavior analysis from surveillance videos: a survey. Artif Intell Rev 42(4):747–765

    Article  Google Scholar 

  • Gross R, Shi J (2001) The CMU motion of body (mobo) database Robotics Institute, Pittsburgh, PA

  • Hasson CJ, Manczurowsky J, Yen S-C (2015) A reinforcement learning approach to gait training improves retention. Front Hum Neurosci 9. doi:10.3389/fnhum.2015.00459

  • Hausdorff JM, Mitchell SL, Firtion R, Peng CK, Cudkowicz ME, Wei JY, Goldberger AL (1997) Altered fractal dynamics of gait: reduced stride-interval correlations with aging and huntington’s disease. J Appl Physiol 82(1):262–269

    Article  Google Scholar 

  • Heinen MR, Osório FS (2006) Gait control generation for physically based simulated robots using genetic algorithms. In: Advances in artificial intelligence-IBERAMIA-SBIA 2006. Springer, pp 562–571

  • Hofmann M, Sural S, Rigoll G (2014) Multimodal biometric gait database: a comparison study. Advanced Institute of Convergence Information Technology, South Korea, pp 71–82

  • Hu W, Tan T, Wang L, Maybank S (2004) A survey on visual surveillance of object motion and behaviors. IEEE Trans Syst Man Cybern Part C Appl Rev 34(3):334–352

    Article  Google Scholar 

  • Iwama H, Okumura M, Makihara Y, Yagi Y (2012) The ou-isir gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans Inf Forensics Secur 7(5):1511–1521

    Article  Google Scholar 

  • Janssen D, Schöllhorn WI, Lubienetzki J, Fölling K, Kokenge H, Davids K (2008) Recognition of emotions in gait patterns by means of artificial neural nets. J Nonverbal Behav 32(2):79–92

    Article  Google Scholar 

  • Jezernik S, Colombo G, Morari M (2001) Automatic gait-pattern adaptation for treadmill training with robotic orthosis Lokomat. In: Congress of the international society of biomechanics, Zürich, Switzerland, p 204. http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=168

  • Johnson AY, Bobick AF (2001) A multi-view method for gait recognition using static body parameters. In: Bigun J, Smeraldi F (eds) Audio-and video-based biometric person authentication: third international conference, AVBPA 2001, Halmstad, Sweden, 6–8 June 2001, proceedings. Springer, Berlin, pp 301–311. doi:10.1007/3-540-45344-X_44

  • Jones BA, Walker ID (2006) Kinematics for multisection continuum robots. IEEE Trans Robot 22(1):43–55

    Article  Google Scholar 

  • Joshi S, Shenoy D, Vibhudendra Simha G, Rrashmi P, Venugopal K, Patnaik L (2010) Classification of alzheimer’s disease and parkinson’s disease by using machine learning and neural network methods. In: 2010 second international conference on machine learning and computing (ICMLC). IEEE, pp 218–222

  • Juang JG (2000) Fuzzy neural network approaches for robotic gait synthesis. IEEE Trans Syst Man Cybern Part B Cybern 30(4):594–601

    Article  Google Scholar 

  • Kadaba MP, Ramakrishnan H, Wootten M et al (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8(3):383–392

    Article  Google Scholar 

  • Kale A, Cuntoor N, Chellappa R (2002) A framework for activity-specific human identification. In: 2002 IEEE international conference on acoustics, speech, and signal processing (ICASSP), vol 4. IEEE, pp IV–3660

  • Ke SR, Thuc HLU, Lee YJ, Hwang JN, Yoo JH, Choi KH (2013) A review on video-based human activity recognition. Computers 2(2):88–131

    Article  Google Scholar 

  • Kim JJ, Lee JJ (2007) Gait adaptation method of biped robot for various terrains using central pattern generator (cpg) and learning mechanism. In: International conference on control, automation and systems, 2007. ICCAS’07. IEEE, pp 10–14

  • Krüger V, Kragic D, Ude A, Geib C (2007) The meaning of action: a review on action recognition and mapping. Adv Robot 21(13):1473–1501

    Google Scholar 

  • Kunju N, Kumar N, Pankaj D, Dhawan A, Kumar A (2009) Emg signal analysis for identifying walking patterns of normal healthy individuals. Indian J Biomech 1:118–122

  • Lai DT, Begg RK, Palaniswami M (2009a) Computational intelligence in gait research: a perspective on current applications and future challenges. IEEE Trans Inf Technol Biomed 13(5):687–702

    Article  Google Scholar 

  • Lai DT, Begg RK, Palaniswami M (2009b) Computational intelligence in gait research: a perspective on current applications and future challenges. IEEE Trans Inf Technol Biomed 13(5):687–702

    Article  Google Scholar 

  • Lai DT, Levinger P, Begg RK, Gilleard WL, Palaniswami M (2009c) Automatic recognition of gait patterns exhibiting patellofemoral pain syndrome using a support vector machine approach. IEEE Trans Inf Technol Biomed 13(5):810–817

    Article  Google Scholar 

  • Lan T, Chen L, Deng Z, Zhou G-T, Mori G (2015) Learning action primitives for multi-level video event understanding. In: Agapito L, Bronstein MM, Rother C (eds) Computer vision-ECCV 2014 workshops: Zurich, Switzerland, 6–7 Sept and 12, 2014, proceedings, part III. Springer, Cham, pp 95–110. doi:10.1007/978-3-319-16199-0_7

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  • Lee TK, Belkhatir M, Sanei S (2014) A comprehensive review of past and present vision-based techniques for gait recognition. Multimed Tools Appl 72(3):2833–2869

    Article  Google Scholar 

  • Levinger P, Lai DT, Begg RK, Webster KE, Feller JA (2009) The application of support vector machines for detecting recovery from knee replacement surgery using spatio-temporal gait parameters. Gait Posture 29(1):91–96

    Article  Google Scholar 

  • Little J, Boyd J (1998) Recognizing people by their gait: the shape of motion. Videre J Comput Vis Res 1(2):1–32

  • Liu LF, Jia W, Zhu YH (2009) Survey of gait recognition. In: Emerging intelligent computing technology and applications with aspects of artificial intelligence. Springer, pp 652–659

  • Liu W, Fernando ONN, Cheok AD, Wijesena JP, Tan RT (2007) Science museum mixed reality digital media exhibitions for children. In: Second workshop on digital media and its Application in museum & heritages. IEEE, pp 389–394

  • Lu J, Wang G, Moulin P (2014) Human identity and gender recognition from gait sequences with arbitrary walking directions. IEEE Trans Inf Forensics Secur 9(1):51–61

    Article  Google Scholar 

  • Mahyuddin AI, Mihradi S, Dirgantara T, Moeliono M, Prabowo T (2012) Development of indonesian gait database using 2d optical motion analyzer system. ASEAN Eng J 62–72

  • Makihara Y, Mannami H, Tsuji A, Hossain MA, Sugiura K, Mori A, Yagi Y (2012) The OU-ISIR gait database comprising the treadmill dataset. IPSJ Trans Comput Vis Appl 4:53–62

    Article  Google Scholar 

  • Mannini A, Sabatini AM (2010) Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2):1154–1175

    Article  Google Scholar 

  • Mavrikios D, Karabatsou V, Alexopoulos K, Pappas M, Gogos P, Chryssolouris G (2006) An approach to human motion analysis and modelling. Int J Ind Ergon 36(11):979–989

    Article  Google Scholar 

  • Mazilu S, Calatroni A, Gazit E, Roggen D, Hausdorff JM, Tröster G (2013) Feature learning for detection and prediction of freezing of gait in parkinson’s disease. In: Perner P (ed) Machine learning and data mining in pattern recognition: 9th International Conference, MLDM 2013, New York, NY, USA, 19–25 July 2013, proceedings. Springer, Berlin, pp 144–158. doi:10.1007/978-3-642-39712-7_11

  • Moeslund TB, Granum E (2001) A survey of computer vision-based human motion capture. Comput Vis Image Underst 81(3):231–268

    Article  MATH  Google Scholar 

  • Moeslund TB, Hilton A, Krüger V (2006) A survey of advances in vision-based human motion capture and analysis. Comput Vis Image Underst 104(2):90–126

    Article  Google Scholar 

  • Moisio KC, Sumner DR, Shott S, Hurwitz DE (2003) Normalization of joint moments during gait: a comparison of two techniques. J Biomech 36(4):599–603

    Article  Google Scholar 

  • Morris RG, Lawson SEM (2010) A review and evaluation of available gait analysis technologies, and their potential for the measurement of impact transmission. Newcastle University, UK

  • Multon F, Kulpa R, Hoyet L, Komura T (2009) Interactive animation of virtual humans based on motion capture data. Comput Anim Virtual Worlds 20(5–6):491–500

    Article  Google Scholar 

  • Muro-de-la Herran A, Garcia-Zapirain B, Mendez-Zorrilla A (2014) Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 14(2):3362–3394

    Article  Google Scholar 

  • Muybridge E, Mozley AV (1887) Muybridge’s complete human and animal locomotion: all 781 plates from the 1887 animal locomotion

  • Neverova N, Wolf C, Lacey G, Fridman L, Chandra D, Barbello B, Taylor G (2015) Learning human identity from motion patterns. arXiv preprint arXiv:1511.03908

  • Ng CB, Tay YH, Goi BM (2012) Recognizing human gender in computer vision: a survey. In: Anthony P, Ishizuka M, Lukose D (eds) PRICAI 2012: trends in artificial intelligence: 12th pacific rim international conference on artificial intelligence, Kuching, Malaysia, 3–7 Sept 2012, proceedings. Springer, Berlin, pp 335–346. doi:10.1007/978-3-642-32695-0_31

  • Ngo TT, Makihara Y, Nagahara H, Mukaigawa Y, Yagi Y (2014) The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recogn 47(1):228–237

    Article  Google Scholar 

  • Nguyen THD, Qui TCT, Xu K, Cheok AD, Teo SL, Zhou Z, Mallawaarachchi A, Lee SP, Liu W, Teo HS et al (2005) Real-time 3d human capture system for mixed-reality art and entertainment. IEEE Trans Vis Comput Graph 11(6):706–721

    Article  Google Scholar 

  • Nixon M, Carter J, Shutler J, Grant M (2001) Experimental plan for automatic gait recognition. University of Southampton, Southampton, UK

  • Nordin M, Frankel VH (2001) Basic biomechanics of the musculoskeletal system. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Novatchkov H, Baca A (2013) Artificial intelligence in sports on the example of weight training. J Sports Sci Med 12(1):27

    Google Scholar 

  • Nukala BT, Shibuya N, Rodriguez A, Tsay J, Lopez J, Nguyen T, Zupancic S, Lie DYC (2015) An efficient and robust fall detection system using wireless gait analysis sensor with artificial neural network (ann) and support vector machine (svm) algorithms. Open J Appl Biosens 3(04):29

    Article  Google Scholar 

  • Nutt J, Marsden C, Thompson P (1993) Human walking and higher-level gait disorders, particularly in the elderly. Neurology 43(2):268–268

    Article  Google Scholar 

  • O’Malley MJ, Abel MF, Damiano DL, Vaughan CL (1997) Fuzzy clustering of children with cerebral palsy based on temporal-distance gait parameters. IEEE Trans Rehabil Eng 5(4):300–309

    Article  Google Scholar 

  • Owusu G (2007) Ai and computer-based methods in performance evaluation of sporting feats: an overview. Artif Intell Rev 27(1):57–70

    Article  Google Scholar 

  • Perry J, Davids JR et al (1992) Gait analysis: normal and pathological function. J Pediatr Orthop 12(6):815

    Article  Google Scholar 

  • Phinyomark A, Hettinga BA, Osis ST, Ferber R (2014) Gender and age-related differences in bilateral lower extremity mechanics during treadmill running. PloS One 9(8):e105246

  • Phinyomark A, Osis S, Hettinga BA, Ferber R (2015) Kinematic gait patterns in healthy runners: a hierarchical cluster analysis. J Biomech 48(14):3897–3904

    Article  Google Scholar 

  • Popovic DB, Popovic MB (2006) Design of a control for a neural prosthesis for walking: use of artificial neural networks. In: 8th seminar on neural network applications in electrical engineering, 2006. NEUREL 2006. IEEE, pp 121–128

  • Poppe R (2007) Vision-based human motion analysis: an overview. Comput Visi Image Underst 108(1):4–18

    Article  Google Scholar 

  • Prakash C, Gupta K, Mittal A, Kumar R, Laxmi V (2015a) Passive marker based optical system for gait kinematics for lower extremity. Procedia Comput Sci 45:176–185

    Article  Google Scholar 

  • Prakash C, Kumar R, Mittal N (2015b) Vision based gait analysis techniques in elderly life-towards a better life. Technical report, CSI Communications

  • Prakash C, Mittal A, Kumar R, Mittal N (2015c) Identification of gait parameters from silhouette images. In: 2015 eighth international conference on contemporary computing (IC3). IEEE, pp 190–195. doi:10.1109/IC3.2015.7346677

  • Prakash C, Mittal A, Kumar R, Mittal N (2015d) Identification of spatio-temporal and kinematics parameters for 2-d optical gait analysis system using passive markers. In: 2015 international conference on advances in computer engineering and applications (ICACEA). IEEE, pp 143–149

  • Prakash C, Gupta K, Kumar R, Mittal N (2016a) Fuzzy logic-based gait phase detection using passive markers. In: Proceedings of fifth international conference on soft computing for problem solving. Springer, pp 561–572

  • Prakash C, Mittal A, Tripathi S, Kumar R, Mittal N (2016b) A framework for human recognition using a multimodel gait analysis approach. In: International conference on computing, communication and automation (ICCCA2016), IEEE

  • Prasad R, Babu S, Siddaiah N, Rao K (2016) A review on techniques for diagnosing and monitoring patients with parkinson’s disease. J Biosens Bioelectron 7(203):2

    Google Scholar 

  • Prentice S, Patla A, Stacey D (2001) Artificial neural network model for the generation of muscle activation patterns for human locomotion. J Electromyogr Kinesiol 11(1):19–30

    Article  Google Scholar 

  • Rida I, Bouridane A, Marcialis GL, Tuveri P (2015) Improved human gait recognition. In: Murino V, Puppo E (eds) Image analysis and processing—ICIAP 2015: 18th international conference, Genoa, Italy, 7–11 Sept 2015, proceedings, Part II. Springer, Cham, pp 119–129. doi:10.1007/978-3-319-23234-8_12

  • Riemer R, Shapiro A (2011) Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J Neuroeng Rehabil 8(1):22

    Article  Google Scholar 

  • Ryu T, Choi HS, Choi H, Chung MK (2006) A comparison of gait characteristics between korean and western people for establishing korean gait reference data. Int J Ind Ergon 36(12):1023–1030

    Article  Google Scholar 

  • Sarkar S, Phillips PJ, Liu Z, Vega IR, Grother P, Bowyer KW (2005) The humanid gait challenge problem: data sets, performance, and analysis. IEEE Trans Pattern Anal Mach Intell 27(2):162–177

    Article  Google Scholar 

  • Savva N, Scarinzi A, Bianchi-Berthouze N (2012) Continuous recognition of player’s affective body expression as dynamic quality of aesthetic experience. IEEE Trans Comput Intell AI Games 4(3):199–212

    Article  Google Scholar 

  • Schöllhorn WI, Jäger JM, Janssen D (2008) Artificial neural network models of sports motions. In: Hong Y, Bartlett R (eds) Routledge handbook of biomechanics and human movement science. Routledge, London, pp 50–64

  • Shirke S, Pawar S, Shah K (2014) Literature review: model free human gait recognition. In: 2014 fourth international conference on communication systems and network technologies (CSNT). IEEE, pp 891–895

  • Sigal L, Black MJ (2006) Humaneva: synchronized video and motion capture dataset for evaluation of articulated human motion. Brown University TR 120

  • Sigal L, Balan AO, Black MJ (2010) Humaneva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int J Comput Vis 87(1–2):4–27

    Article  Google Scholar 

  • Skelly MM, Chizeck HJ (2001) Real-time gait event detection for paraplegic fes walking. IEEE Trans Neural Syst Rehabil Eng 9(1):59–68

    Article  Google Scholar 

  • Song Y, Zhang J, Cao L, Sangeux M (2013) On discovering the correlated relationship between static and dynamic data in clinical gait analysis. In: Blockeel H, Kersting K, Nijssen S, Zelezny F (eds) Machine learning and knowledge discovery in databases: European conference, ECML PKDD 2013, Prague, Czech Republic, 23-27 Sept 2013, proceedings, part III. Springer, Berlin, pp 563–578. doi:10.1007/978-3-642-40994-3_36

  • Sutherland DH (2001) The evolution of clinical gait analysis part l: kinesiological EMG. Gait Posture 14(1):61–70

    Article  Google Scholar 

  • Sutherland DH (2002) The evolution of clinical gait analysis: Part ii kinematics. Gait Posture 16(2):159–179

    Article  Google Scholar 

  • Sutherland DH (2005) The evolution of clinical gait analysis part iii-kinetics and energy assessment. Gait Posture 21(4):447–461

    Article  Google Scholar 

  • Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  MATH  Google Scholar 

  • Tafazzoli F, Bebis G, Louis S, Hussain M (2014) Improving human gait recognition using feature selection. In: International symposium on visual computing. Springer, pp 830–840

  • Takahashi T, Ishida K, Hirose D, Nagano Y, Okumiya K, Nishinaga M, Doi Y, Yamamoto H (2004) Vertical ground reaction force shape is associated with gait parameters, timed up and go, and functional reach in elderly females. J Rehabil Med 36(1):42–45

    Article  Google Scholar 

  • Tao W, Liu T, Zheng R, Feng H (2012) Gait analysis using wearable sensors. Sensors 12(2):2255–2283

    Article  Google Scholar 

  • Tirosh O, Baker R, McGinley J (2010) Gaitabase: web-based repository system for gait analysis. Comput Biol Med 40(2):201–207

    Article  Google Scholar 

  • Toro B, Nester CJ, Farren PC (2007) Cluster analysis for the extraction of sagittal gait patterns in children with cerebral palsy. Gait Posture 25(2):157–165

    Article  Google Scholar 

  • Turaga P, Chellappa R, Subrahmanian VS, Udrea O (2008) Machine recognition of human activities: a survey. IEEE Trans Circuits Syst Video Technol 18(11):1473–1488

    Article  Google Scholar 

  • Untaroiu CD, Meissner MU, Crandall JR, Takahashi Y, Okamoto M, Ito O (2009) Crash reconstruction of pedestrian accidents using optimization techniques. Int J Impact Eng 36(2):210–219

    Article  Google Scholar 

  • Van Rooden SM, Heiser WJ, Kok JN, Verbaan D, van Hilten JJ, Marinus J (2010) The identification of parkinson’s disease subtypes using cluster analysis: a systematic review. Mov Disord 25(8):969–978

    Article  Google Scholar 

  • Vasconcelos MJM, Tavares JMR (2008) Human motion analysis: methodologies and applications. CMBBE 2008

  • Wang J, She M, Nahavandi S, Kouzani A (2010) A review of vision-based gait recognition methods for human identification. In: 2010 international conference on digital image computing: techniques and applications (DICTA). IEEE, pp 320–327

  • Wawrzyński P (2012) Autonomous reinforcement learning with experience replay for humanoid gait optimization. Procedia Comput Sci 13:205–211

    Article  Google Scholar 

  • Webber BL, Phillips CB, Badler NI (2015) Simulating humans: computer graphics, animation, and control. Center for Human Modeling and Simulation. Oxford University Press, USA, p 68

  • Whittle MW (2014) Gait analysis: an introduction. Butterworth-Heinemann, London

  • Wright J, Jordanov I (2014) Intelligent approaches in locomotion—a review. J Intell Robot Syst 80(2):255–277

  • Wu J, Wu B (2015) The novel quantitative technique for assessment of gait symmetry using advanced statistical learning algorithm. BioMed Res Int 2015:1–7

  • Xu G, Zhang Y, Begg R (2006) Mining gait pattern for clinical locomotion diagnosis based on clustering techniques. In: Advanced data mining and applications. Springer, pp 296–307

  • Yano H, Tamefusa S, Tanaka N, Saitou H, Iwata H (2009) Gait rehabilitation for stair climbing with a locomotion interface. In: IEEE international conference on rehabilitation robotics, 2009. ICORR 2009. IEEE, pp 218–223

  • Yeguas-Bolivar E, Muñoz-Salinas R, Medina-Carnicer R, Carmona-Poyato A (2014) Comparing evolutionary algorithms and particle filters for markerless human motion capture. Appl Soft Comput 17:153–166

    Article  Google Scholar 

  • Yu H, Alaqtash M, Spier E, Sarkodie-Gyan T (2010) Analysis of muscle activity during gait cycle using fuzzy rule-based reasoning. Measurement 43(9):1106–1114

    Article  Google Scholar 

  • Yun Y, Kim HC, Shin SY, Lee J, Deshpande AD, Kim C (2014) Statistical method for prediction of gait kinematics with gaussian process regression. J Biomech 47(1):186–192

    Article  Google Scholar 

  • Zeng M, Nguyen LT, Yu B, Mengshoel OJ, Zhu J, Wu P, Zhang J (2014) Convolutional neural networks for human activity recognition using mobile sensors. In: 2014 6th international conference on mobile computing, applications and services (MobiCASE). IEEE, pp 197–205

  • Zhang Z, Hu M, Wang Y (2011a) A survey of advances in biometric gait recognition. In: Sun Z, Lai J, Chen X, Tan T (eds) Biometric recognition: 6th Chinese conference, CCBR 2011, Beijing, China, 3–4 Dec 2011, proceedings. Springer Berlin, pp 150–158. doi:10.1007/978-3-642-25449-9_19

  • Zhang Z, Seah HS, Quah CK (2011b) Particle swarm optimization for markerless full body motion capture. In: Panigrahi B, Ketan and Shi, Yuhui and Lim, Meng-Hiot (eds) Handbook of swarm intelligence: concepts, principles and applications. Springer, Berlin, pp 201–220. doi:10.1007/978-3-642-17390-5_9

  • Zhang D, Wang Y, Zhang Z, Hu M (2013) Estimation of view angles for gait using a robust regression method. Multimed Tools Appl 65(3):419–439

    Article  Google Scholar 

  • Zhang J, Lockhart TE, Soangra R (2014) Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors. Ann Biomed Eng 42(3):600–612

    Article  Google Scholar 

  • Zhao C, Zhang X, Guo Q (2012) The application of machine-learning on lower limb motion analysis in human exoskeleton system. In: Ge SS, Khatib O, Cabibihan J-J, Simmons R, Williams M-A (eds) Social robotics: 4th international conference, ICSR 2012, Chengdu, China, 29–31 Oct 2012, proceedings. Springer, Berlin, pp 600–611. doi:10.1007/978-3-642-34103-8_61

  • Zheng H, Yang M, Wang H, McClean S (2009) Machine learning and statistical approaches to support the discrimination of neuro-degenerative diseases based on gait analysis. In: McClean S, Millard P, El-Darzi E, Nugent C (eds) Intelligent patient management. Springer, Berlin, pp 57–70. doi:10.1007/978-3-642-00179-6_4

Download references

Acknowledgments

The authors gratefully acknowledge the support of Department of Science and Technology, Ministry of Science and Technology, Government of India for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, C., Kumar, R. & Mittal, N. Recent developments in human gait research: parameters, approaches, applications, machine learning techniques, datasets and challenges. Artif Intell Rev 49, 1–40 (2018). https://doi.org/10.1007/s10462-016-9514-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-016-9514-6

Keywords

Navigation