Abstract
Foreground detection or moving object detection is a fundamental and critical task in video surveillance systems. Background subtraction using Gaussian Mixture Model (GMM) is a widely used approach for foreground detection. Many improvements have been proposed over the original GMM developed by Stauffer and Grimson (IEEE Computer Society conference on computer vision and pattern recognition, vol 2, Los Alamitos, pp 246–252, 1999. doi:10.1109/CVPR.1999.784637) to accommodate various challenges experienced in video surveillance systems. This paper presents a review of various background subtraction algorithms based on GMM and compares them on the basis of quantitative evaluation metrics. Their performance analysis is also presented to determine the most appropriate background subtraction algorithm for the specific application or scenario of video surveillance systems.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bouwmans T (2009) Subspace learning for background modeling: a survey. Recent Patents Comput Sci 2(3):223–234
Bouwmans T (2011) Recent advanced statistical background modeling for foreground detection-a systematic survey. Recent Patents Comput Sci 4(3):147–176
Bouwmans T (2014) Traditional and recent approaches in background modeling for foreground detection: an overview. Comput Sci Rev 11–12:31–66
Bouwmans T, Baf FE (2010) Statistical background modeling for foreground detection: a survey. Handbook of Pattern Recognition and Computer pp 181–199
Bouwmans T, Baf FE, Vachon B (2008) Background modeling using mixture of Gaussians for foreground detection a survey. In: Recent patents on computer science, pp 219–237
Butler D, Sridharan S, Bove VMJ (2003) Real-time adaptive background segmentation. In: Multimedia and expo, 2003. ICME ’03. Proceedings. 2003 International Conference on, vol 3, pp 341–344
Chan A, Mahadevan V, Vasconcelos N (2011) Generalized Stauffer–Grimson background subtraction for dynamic scenes. Mach Vis Appl 22(5):751–766. doi:10.1007/s00138-010-0262-3
Chang R, Gandhi T, Trivedi M (2004) Vision modules for a multi-sensory bridge monitoring approach. In: Intelligent transportation systems, 2004. Proceedings. The 7th international IEEE conference on, pp 971–976
Chen Z, Ellis T (2014) A self-adaptive Gaussian mixture model. Comput Vis Image Underst 122:35–46. doi:10.1016/j.cviu.2014.01.004
Cheung SCS, Kamath C (2004) Robust techniques for background subtraction in urban traffic video. In: Panchanathan S, Vasudev B (eds) Proceedings Visual Communications and Image Processing, SPIE, vol 5308, pp 881–892
Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. In: Vernon D (ed) Computer Vision-ECCV 2000, vol 1843., Lecture Notes in Computer Science. Springer, Berlin, pp 751–767
Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381. doi:10.1109/34.990138
Goyette N, Jodoin P, Porikli F, Konrad J, Ishwar P (2012) Changedetection.net: a new change detection benchmark dataset. In: Computer vision and pattern recognition workshops (CVPRW), 2012 IEEE Computer Society Conference on, pp 1–8
Ilyas A, Scuturici M, Miguet S (2009) Real time foreground-background segmentation using a modified codebook model. In: Advanced video and signal based surveillance, 2009. AVSS ’09. Sixth IEEE International Conference on, pp 454–459
KaewTraKulPong P, Bowden R (2002) An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino P, Jones G, Paragios N, Regazzoni C (eds) Video-Based Surveill Syst. Springer, Berlin, pp 135–144
Lee DS (2005) Effective Gaussian mixture learning for video background subtraction. IEEE Trans Pattern Anal Mach Intell 27(5):827–832. doi:10.1109/TPAMI.2005.102
McFarlane N, Schofield C (1995) Segmentation and tracking of piglets in images. Mach Vis Appl 8(3):187–193. doi:10.1007/BF01215814
Messelodi S, Modena C, Segata N, Zanin M (2005) A Kalman filter based background updating algorithm robust to sharp illumination changes. In: Roli F, Vitulano S (eds) Image analysis and processing ICIAP 2005, vol 3617., Lecture Notes in Computer ScienceSpringer, Berlin, pp 163–170
Piccardi M (2004) Background subtraction techniques: a review. In: Systems, man and cybernetics, 2004 IEEE international conference on, vol. 4, pp 3099–3104
Power PW, Schoonees JA (2002) Understanding background mixture models for foreground segmentation. In: Proceedings image and vision computing New Zealand
Roy A, Shinde S, don Kang K (2010) An approach for efficient real time moving object detection. In: Embedded systems & applications (ESA), International Conference on (2010)
Shah M, Deng J, Woodford B (2010) Localized adaptive learning of mixture of Gaussians models for background extraction. In: Image and Vision Computing New Zealand (IVCNZ), 25th international conference of, pp 1–8. doi:10.1109/IVCNZ.2010.6148870
Shah M, Deng J, Woodford B (2014) Video background modeling: recent approaches, issues and our proposed techniques. Mach Vis Appl 25(5):1105–1119. doi:10.1007/s00138-013-0552-7
Sobral A, Vacavant A (2014) A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput Vis Image Underst 122:4–21. doi:10.1016/j.cviu.2013.12.005
Stauffer C, Grimson W (1999) Adaptive background mixture models for real-time tracking. In: Computer vision and pattern recognition, 1999. IEEE Computer Society Conference on., vol 2, pp 246–252. Los Alamitos. doi:10.1109/CVPR.1999.784637
Toyama K, Krumm J, Brumitt B, Meyers B (1999) Wallflower: principles and practice of background maintenance. In: Computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol 1, pp 255–261
Vacavant A, Chateau T, Wilhelm A, Lequivre L (2013) A benchmark dataset for outdoor foreground/background extraction. In: Park JI, Kim J (eds) Computer Vision—ACCV 2012 Workshops, vol 7728., Lecture Notes in Computer Science. Springer, Berlin, pp 291–300
Wang L, Pan C (2011) Effective multi-resolution background subtraction. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 909–912
White B, Shah M (2007) Automatically tuning background subtraction parameters using particle swarm optimization. In: 2007 IEEE International Conference on Multimedia and Expo, pp 1826–1829
Yu X, Chen X, Zhang H (2011) Accurate motion detection in dynamic scenes based on ego-motion estimation and optical flow segmentation combined method. In: Photonics and Optoelectronics (SOPO), 2011 symposium on, pp 1–4
Zhang E, Chen F, Zhang W (2006) A novel particle filter based background subtraction method. In: Computational intelligence and security, 2006 international conference on, vol 2, pp 1837–1840
Zheng J, Wang Y, Nihan N, Hallenbeck E (2006) Extracting roadway background image: a mode based approach. J Transp Res Rep 1944:82–88
Zivkovic Z, van der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit Lett 27(7):773–780. doi:10.1016/j.patrec.2005.11.005
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Goyal, K., Singhai, J. Review of background subtraction methods using Gaussian mixture model for video surveillance systems. Artif Intell Rev 50, 241–259 (2018). https://doi.org/10.1007/s10462-017-9542-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10462-017-9542-x