Skip to main content
Log in

Review of background subtraction methods using Gaussian mixture model for video surveillance systems

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Foreground detection or moving object detection is a fundamental and critical task in video surveillance systems. Background subtraction using Gaussian Mixture Model (GMM) is a widely used approach for foreground detection. Many improvements have been proposed over the original GMM developed by Stauffer and Grimson (IEEE Computer Society conference on computer vision and pattern recognition, vol 2, Los Alamitos, pp 246–252, 1999. doi:10.1109/CVPR.1999.784637) to accommodate various challenges experienced in video surveillance systems. This paper presents a review of various background subtraction algorithms based on GMM and compares them on the basis of quantitative evaluation metrics. Their performance analysis is also presented to determine the most appropriate background subtraction algorithm for the specific application or scenario of video surveillance systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bouwmans T (2009) Subspace learning for background modeling: a survey. Recent Patents Comput Sci 2(3):223–234

    Article  Google Scholar 

  • Bouwmans T (2011) Recent advanced statistical background modeling for foreground detection-a systematic survey. Recent Patents Comput Sci 4(3):147–176

    Google Scholar 

  • Bouwmans T (2014) Traditional and recent approaches in background modeling for foreground detection: an overview. Comput Sci Rev 11–12:31–66

    Article  MATH  Google Scholar 

  • Bouwmans T, Baf FE (2010) Statistical background modeling for foreground detection: a survey. Handbook of Pattern Recognition and Computer pp 181–199

  • Bouwmans T, Baf FE, Vachon B (2008) Background modeling using mixture of Gaussians for foreground detection a survey. In: Recent patents on computer science, pp 219–237

  • Butler D, Sridharan S, Bove VMJ (2003) Real-time adaptive background segmentation. In: Multimedia and expo, 2003. ICME ’03. Proceedings. 2003 International Conference on, vol 3, pp 341–344

  • Chan A, Mahadevan V, Vasconcelos N (2011) Generalized Stauffer–Grimson background subtraction for dynamic scenes. Mach Vis Appl 22(5):751–766. doi:10.1007/s00138-010-0262-3

    Article  Google Scholar 

  • Chang R, Gandhi T, Trivedi M (2004) Vision modules for a multi-sensory bridge monitoring approach. In: Intelligent transportation systems, 2004. Proceedings. The 7th international IEEE conference on, pp 971–976

  • Chen Z, Ellis T (2014) A self-adaptive Gaussian mixture model. Comput Vis Image Underst 122:35–46. doi:10.1016/j.cviu.2014.01.004

    Article  Google Scholar 

  • Cheung SCS, Kamath C (2004) Robust techniques for background subtraction in urban traffic video. In: Panchanathan S, Vasudev B (eds) Proceedings Visual Communications and Image Processing, SPIE, vol 5308, pp 881–892

  • Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. In: Vernon D (ed) Computer Vision-ECCV 2000, vol 1843., Lecture Notes in Computer Science. Springer, Berlin, pp 751–767

  • Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381. doi:10.1109/34.990138

    Article  Google Scholar 

  • Goyette N, Jodoin P, Porikli F, Konrad J, Ishwar P (2012) Changedetection.net: a new change detection benchmark dataset. In: Computer vision and pattern recognition workshops (CVPRW), 2012 IEEE Computer Society Conference on, pp 1–8

  • Ilyas A, Scuturici M, Miguet S (2009) Real time foreground-background segmentation using a modified codebook model. In: Advanced video and signal based surveillance, 2009. AVSS ’09. Sixth IEEE International Conference on, pp 454–459

  • KaewTraKulPong P, Bowden R (2002) An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino P, Jones G, Paragios N, Regazzoni C (eds) Video-Based Surveill Syst. Springer, Berlin, pp 135–144

    Chapter  Google Scholar 

  • Lee DS (2005) Effective Gaussian mixture learning for video background subtraction. IEEE Trans Pattern Anal Mach Intell 27(5):827–832. doi:10.1109/TPAMI.2005.102

    Article  Google Scholar 

  • McFarlane N, Schofield C (1995) Segmentation and tracking of piglets in images. Mach Vis Appl 8(3):187–193. doi:10.1007/BF01215814

    Article  Google Scholar 

  • Messelodi S, Modena C, Segata N, Zanin M (2005) A Kalman filter based background updating algorithm robust to sharp illumination changes. In: Roli F, Vitulano S (eds) Image analysis and processing ICIAP 2005, vol 3617., Lecture Notes in Computer ScienceSpringer, Berlin, pp 163–170

  • Piccardi M (2004) Background subtraction techniques: a review. In: Systems, man and cybernetics, 2004 IEEE international conference on, vol. 4, pp 3099–3104

  • Power PW, Schoonees JA (2002) Understanding background mixture models for foreground segmentation. In: Proceedings image and vision computing New Zealand

  • Roy A, Shinde S, don Kang K (2010) An approach for efficient real time moving object detection. In: Embedded systems & applications (ESA), International Conference on (2010)

  • Shah M, Deng J, Woodford B (2010) Localized adaptive learning of mixture of Gaussians models for background extraction. In: Image and Vision Computing New Zealand (IVCNZ), 25th international conference of, pp 1–8. doi:10.1109/IVCNZ.2010.6148870

  • Shah M, Deng J, Woodford B (2014) Video background modeling: recent approaches, issues and our proposed techniques. Mach Vis Appl 25(5):1105–1119. doi:10.1007/s00138-013-0552-7

    Article  Google Scholar 

  • Sobral A, Vacavant A (2014) A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput Vis Image Underst 122:4–21. doi:10.1016/j.cviu.2013.12.005

    Article  Google Scholar 

  • Stauffer C, Grimson W (1999) Adaptive background mixture models for real-time tracking. In: Computer vision and pattern recognition, 1999. IEEE Computer Society Conference on., vol 2, pp 246–252. Los Alamitos. doi:10.1109/CVPR.1999.784637

  • Toyama K, Krumm J, Brumitt B, Meyers B (1999) Wallflower: principles and practice of background maintenance. In: Computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol 1, pp 255–261

  • Vacavant A, Chateau T, Wilhelm A, Lequivre L (2013) A benchmark dataset for outdoor foreground/background extraction. In: Park JI, Kim J (eds) Computer Vision—ACCV 2012 Workshops, vol 7728., Lecture Notes in Computer Science. Springer, Berlin, pp 291–300

  • Wang L, Pan C (2011) Effective multi-resolution background subtraction. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 909–912

  • White B, Shah M (2007) Automatically tuning background subtraction parameters using particle swarm optimization. In: 2007 IEEE International Conference on Multimedia and Expo, pp 1826–1829

  • Yu X, Chen X, Zhang H (2011) Accurate motion detection in dynamic scenes based on ego-motion estimation and optical flow segmentation combined method. In: Photonics and Optoelectronics (SOPO), 2011 symposium on, pp 1–4

  • Zhang E, Chen F, Zhang W (2006) A novel particle filter based background subtraction method. In: Computational intelligence and security, 2006 international conference on, vol 2, pp 1837–1840

  • Zheng J, Wang Y, Nihan N, Hallenbeck E (2006) Extracting roadway background image: a mode based approach. J Transp Res Rep 1944:82–88

  • Zivkovic Z, van der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit Lett 27(7):773–780. doi:10.1016/j.patrec.2005.11.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana Goyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, K., Singhai, J. Review of background subtraction methods using Gaussian mixture model for video surveillance systems. Artif Intell Rev 50, 241–259 (2018). https://doi.org/10.1007/s10462-017-9542-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-017-9542-x

Keywords

Navigation