Abstract
Face Recognition has rapidly grown as a commercial requirement for a variety of applications in recent years. There are certain situations in which all the face images may not be available before training or the face images may be distributed at geographically apart locations. Incremental face recognition addresses these problems and possesses certain advantages i.e. being time efficient and dynamic model updation allows addition/deletion of samples on the fly. In this paper, a comprehensive review on the Incremental learning algorithms that are aimed at Face Recognition or tested over Face datasets. The contribution of this paper is three-fold: (a) a novel taxonomy of the Incremental methods have been proposed (b) a review of the face datasets used in Incremental face recognition have been carried out and (c) a performance analysis of the Incremental face recognition methods over various face datasets is also presented. Important conclusions have been drawn that will help the researchers in making suitable choices amongst various methods and datasets. This survey shall act as a useful reference to the researchers and practitioners working in incremental face recognition. Furthermore, several viable research directions have been given at the end.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agrawal RK, Bala M, Bala R (2009) Incremental framework for feature selection and Bayesian classification for multivariate normal distribution. In: 2009 IEEE international advance computing conference, pp 1469–1474
Agrawal RK, Karmeshu (2008) Perturbation scheme for online learning of features: incremental principal component analysis. Pattern Recognit 41(5):1452–1460
Azary S, Savakis A (2017) Continuous recognition with incremental learning on grassmann manifolds. In: 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS), pp 1477–1480
Balaban S (2015) Deep learning and face recognition: the state of the art Proc. SPIE 9457, Biometric and surveillance technology for human and activity identification XII, 94570B
Belhumeur PN, Hespanha J, Kriegman DJ (1997) Eigenfaces versus fisherfaces: recognition using class specific linear projection. Technical report, Yale University, New Haven, United States
Bendale A, Boult T (2014) Reliable posterior probability estimation for streaming face recognition. In: 2014 IEEE conference on computer vision and pattern recognition workshops, pp 56–63
Bhowmik MK, De BK, Bhattacharjee D, Basu DK, Nasipuri M (2012). Multisensor fusion of visual and thermal images for human face identification using different svm kernels. In: 2012 IEEE long island systems, applications and technology conference (LISAT), pp 1–7
Bioid face dataset. https://www.bioid.com/facedb/. Accessed 29 Jan 2019
Boukharouba K, Bako L, Lecoeuche S (2009) Incremental and decremental multi-category classification by support vector machines. In: 2009 International conference on machine learning and applications, pp 294–300
Buhuş ER, Grama L, Şerbu C (2017) A facial recognition application based on incremental supervised learning. In: 2017 13th IEEE international conference on intelligent computer communication and processing (ICCP), pp 279–286
Cao Y, He H, Huang HH (2011) Lift: a new framework of learning from testing data for face recognition. Neurocomputing 74(6):916–929
Chen BC, Chen CS, Hsu WH (2015) Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. IEEE Trans Multimedia 17(6):804–815
Chen W, Li Y, Pan B, Chen B (2016) Incremental learning based on block sparse kernel nonnegative matrix factorization. In: 2016 International conference on wavelet analysis and pattern recognition (ICWAPR), pp 219–224
Chen WS, Pan BB, Fang B, Zou J (2008) A novel constraint non-negative matrix factorization criterion based incremental learning in face recognition. In: 2008 International conference on wavelet analysis and pattern recognition, vol 1, pp 292–297
Chen X, Ziarko W (2010) Rough set-based incremental learning approach to face recognition. In: Szczuka Marcin, Kryszkiewicz Marzena, Ramanna Sheela, Jensen Richard, Qinghua Hu (eds) Rough Sets Curr Trends Comput. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 356–365
Cheng M, Fang B, Tang YY, Zhang T, Wen J (2010) Incremental embedding and learning in the local discriminant subspace with application to face recognition. IEEE Trans Syst Man Cybernet C Appl Rev 40(5):580–591
Choi Y, Ozawa S, Lee M (2014) Incremental two-dimensional kernel principal component analysis. Neurocomputing 134:280–288 Special issue on the 2011 Sino-foreign-interchange Workshop on Intelligence Science and Intelligent Data Engineering (IScIDE 2011) Learning Algorithms and Applications
Choi K, Toh KN, Byun H (2012) Incremental face recognition for large-scale social network services. Pattern Recognit 45(8):2868–2883
Choi Y, Tokumoto T, Lee M, Ozawa S (2011) Incremental two-dimensional two-directional principal component analysis (i(2d) lt;sup gt;2 lt;/sup gt;pca) for face recognition. In: 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1493–1496
Connolly J, Granger E, Sabourin R (2009) Incremental adaptation of fuzzy artmap neural networks for video-based face classification. In: 2009 IEEE symposium on computational intelligence for security and defense applications, pp 1–8
Connolly J, Granger E, Sabourin R (2010) An adaptive ensemble of fuzzy artmap neural networks for video-based face classification. In: IEEE congress on evolutionary computation, pp 1–8
Déniz O, Castrillón M, Lorenzo J, Hernández M (2002) An incremental learning algorithm for face recognition. In: Tistarelli Massimo, Bigun Josef, Jain Anil K (eds) Biometric authentication. Springer, Berlin, Heidelberg, pp 1–9
Dhamecha TI, Singh R, Vatsa M (2016) On incremental semi-supervised discriminant analysis. Pattern Recognit 52:135–147
Dinkova P, Georgieva P, Manolova A, Milanova M (2016) Face recognition based on subject dependent hidden markov models. In: 2016 IEEE international Black Sea conference on communications and networking (BlackSeaCom), pp 1–5
Dong H, Gu N (2001) Asian face image database pf01
Duan G, Chen Y (2011) Batch-incremental principal component analysis with exact mean update. In: 2011 18th IEEE international conference on image processing, pp 1397–1400
Ergul E (2017) Relative attribute based incremental learning for image recognition. CAAI Trans Intell Technol 2(1):1–11
Evgin G, Goceri N (2017) Deep learning in medical image analysis: recent advances and future trends. In: 11th Int. conf. on computer graphics, visualization, computer vision and image processing (CGVCVIP 2017), 20–23 July 2017, Lisbon, Portugal, pp 305–311
Face recognition grand challenge dataset. https://www.nist.gov/programs-projects/face-recognition-grand-challenge-frgc. Accessed 29 Jan 2019
Feret face dataset. https://www.nist.gov/programs-projects/face-recognition-technology-feret. Accessed 29 Jan 2019
Franco A, Maio D, (2010) Maltoni D Incremental template updating for face recognition in home environments. Pattern Recognit 43(8):2891–2903
Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660
Goceri E (2018) Formulas behind deep learning success. In: Proc. of the international conference on applied analysis and mathematical modeling (ICAAMM2018), Istanbul, Turkey, p 156
Goceri E, Gooya A (2018) On the importance of batch size for deep learning. In: Proceedings of the international conference on mathematics (ICOMATH2018), an Istanbul meeting for world mathematicians, minisymposium on approximation theory & minisymposium on math education, Istanbul, Turkey
Gross R, Matthews I, Cohn J, Kanade T, Baker S (2010) Multi-pie. Image Vis Comput 28(5):807–813
Guan N, Tao D, Luo Z, Yuan B (2012) Online nonnegative matrix factorization with robust stochastic approximation. IEEE Trans Neural Netw Learn Syst 23(7):1087–1099
Hastie T, Tibshirani R, Friedman JJH (2001) The elements of statistical learning. vol 1. np
Hisada M, Ozawa S, Zhang K, Kasabov N (2010) Incremental linear discriminant analysis for evolving feature spaces in multitask pattern recognition problems. Evol Syst 1(1):17–27
Huang GB, Ramesh M, Berg T, Miller EL (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst
Iosifidis A, Gabbouj M (2017) Class-specific kernel discriminant analysis revisited: further analysis and extensions. IEEE Trans Cybern 47(12):4485–4496
James EAK, Annadurai S (2009) Implementation of incremental linear discriminant analysis using singular value decomposition for face recognition. In: 2009 First international conference on advanced computing, pp 172–175
Jia P, Yin J, Huang X, Hu D (2009) Incremental Laplacian eigenmaps by preserving adjacent information between data points. Pattern Recognit Lett 30(16):1457–1463
Jobanputra M, Chaudhary A, Shah A, Gandhi R (2018) Real-time face recognition in hd videos: algorithms and framework. In 2018 Annual IEEE international systems conference (SysCon), pp 1–8
Jung SU, Yoo JH (2007) A robust eye detection method in facial region. In: Gagalowicz André, Philips Wilfried (eds) Computer vision/computer graphics collaboration techniques. Springer, Berlin, Heidelberg, pp 596–606
Kang W, Choi JY (2006) Kernel machine for fast and incremental learning of face. In 2006 SICE-ICASE international joint conference, pp 1015–1019
Kim S, Mallipeddi R, Lee M (2012) Incremental face recognition: hybrid approach using short-term memory and long-term memory. In: Huang Tingwen, Zeng Zhigang, Li Chuandong, Leung Chi Sing (eds) Neural information processing. Springer, Berlin, Heidelberg, pp 194–201
Kim S, Mallipeddi R, Lee M (2014) Incremental face recognition using rehearsal and recall processes. In: 2014 International joint conference on neural networks (IJCNN), pp 2752–2757
Kim B, Park H (2012) Efficient face recognition based on mct and i(2d) lt;sup gt;2 lt;/sup gt;pca. In: 2012 IEEE international conference on systems, man, and cybernetics (SMC), pp 2585–2590
Kim TK, Stenger B, Kittler J, Cipolla R (2011) Incremental linear discriminant analysis using sufficient spanning sets and its applications. Int J Comput Vis 91(2):216–232
Kouropteva O, Okun O, Pietikäinen M (2005) Incremental locally linear embedding. Pattern Recogniti 38(10):1764–1767
Kumar N, Agrawal RK, Jaiswal A (2014) Incremental and decremental exponential discriminant analysis for face recognition. Int J Comput Vis Image Process (IJCVIP) 4(1):40–55
Kumar N, Berg AC, Belhumeur PN, Nayar SK (2009) Attribute and simile classifiers for face verification. In: 2009 IEEE 12th international conference on computer vision, pp 365–372
La Torre MD, Granger E, Radtke PVW, Sabourin R, Gorodnichy DO (2012) Incremental update of biometric models in face-based video surveillance. In: The 2012 international joint conference on neural networks (IJCNN), pp 1–8
Lee S, Sung J, Kim D (2007) Incremental update of linear appearance models and its application to aam: incremental aam. In: Kamel Mohamed, Campilho Aurélio (eds) Image analysis and recognition. Springer, Berlin, Heidelberg, pp 538–547
LFW face dataset. http://vis-www.cs.umass.edu/lfw/index.html. Accessed 29 Jan 2019
Li M, Bao S, Qian W, Su Z, Ratha NK (2013) Face recognition using early biologically inspired features. In: 2013 IEEE sixth international conference on biometrics: theory, applications and systems (BTAS), pp 1–6
Li L, Jun Z, Fei J, Li S (2017) An incremental face recognition system based on deep learning. In: 2017 Fifteenth IAPR international conference on machine vision applications (MVA), pp 238–241
Li SZ, Yi D, Lei Z, Liao S (2013) The casia nir-vis 2.0 face database. In: IEEE computer vision and pattern recognition workshops (CVPRW), 2013 IEEE conference on, pp 348–353
Liang Y, Yang Y, Shen F, Zhao J, Zhu T (2017) An incremental deep learning network for on-line unsupervised feature extraction. In: Liu Derong, Xie Shengli, Li Yuanqing, Zhao Dongbin, El-Alfy El-Sayed M (eds) Neural information processing. Springer International Publishing, Cham, pp 383–392
Lin L, Wang K, Meng D, Zuo W, Zhang L (2018) Active self-paced learning for cost-effective and progressive face identification. IEEE Trans Pattern Anal Mach Intell 40(1):7–19
Liu X, Chen T, Thornton SM (2003) Eigenspace updating for non-stationary process and its application to face recognition. Pattern Recognit 36(9):1945–1959
Liu H, Duan H, Cui H, Yin Y (2016) Face recognition using training data with artificial occlusions. In: 2016 Visual communications and image processing (VCIP), pp 1–4
Liu X, Liu J, Liu X, Kong Z, Yang X (2018) Incremental sparse linear regression algorithms for face recognition. In: 2018 Tenth international conference on advanced computational intelligence (ICACI), pp 69–74
Liu X, Yin J, Feng Z, Dong J (2006) Incremental manifold learning via tangent space alignment. In: Schwenker Friedhelm, Marinai Simone (eds) Artificial neural networks in pattern recognition. Springer, Berlin, Heidelberg, pp 107–121
Liwicki S, Zafeiriou S, Tzimiropoulos G, Pantic M (2012) Efficient online subspace learning with an indefinite kernel for visual tracking and recognition. IEEE Trans Neural Netw Learn Syst 23(10):1624–1636
Lu GF, Jian Z, Wang Y (2015) Incremental learning from chunk data for idr/qr. Image Vis Comput 36:1–8
Lu GF, Zou J (2015) Incremental maximum margin criterion based on eigenvalue decomposition updating algorithm. Mach Vis Appl 26(6):807–817
Lu GF, Zou J, Wang Y (2012) Incremental complete lda for face recognition. Pattern Recognit 45(7):2510–2521
Lu GF, Zou J, Wang Y (2016) A new and fast implementation of orthogonal lda algorithm and its incremental extension. Neural Process Lett 43(3):687–707
Luo W (2011) Face recognition based on Laplacian eigenmaps. In: 2011 International conference on computer science and service system (CSSS), pp 416–419
Lyons M, Akamatsu S, Kamachi M, Gyoba J (1998) Coding facial expressions with gabor wavelets. In: Automatic face and gesture recognition, 1998. Proceedings. Third IEEE international conference on, pp 200–205
Mahale G, Bhatia E, Nandy SK, Narayan R (2016) Vop: architecture of a processor for vector operations in on-line learning of neural networks. In: 2016 29th International conference on VLSI design and 2016 15th international conference on embedded systems (VLSID), pp 391–396
Martinez AM, Benavente R (1998) Cvc technical report# 24. The AR Face Database
Masip D, Lapedriza A, Vitria J (2009) Boosted online learning for face recognition. IEEE Trans Syst Man Cybern B Cybern 39(2):530–538
Mohd Zaki S, Yin H (2008) Semi-supervised growing neural gas for face recognition. In: Fyfe Colin, Kim Dongsup, Lee Soo-Young, Yin Hujun (eds) Intelligent data engineering and automated learning—IDEAL 2008. Springer, Berlin, Heidelberg, pp 525–532
Mutelo RM, Dlay SS, Woo WL (2008) Two dimensional incremental reduction pca: a novel appearance based technique for image representation and recognition. In: 2008 5th International conference on visual information engineering (VIE 2008), pp 588–593
Nakouri H, Limam M (2015) Incremental generalized low rank approximation of matrices for visual learning and recognition. Pattern Recognit Image Anal 25(1):68–72
Nakouri H, Limam M (2016) An incremental two-dimensional principal component analysis for image compression and recognition. In: 2016 12th International conference on signal-image technology internet-based systems (SITIS), pp 725–731
Orl / olivetti faces / at&t face dataset. https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html. Accessed 29 Jan 2019
Oyama T, Karungaru S, Tsuge S, Mitsukura Y, Fukumi M (2008) Incremental learning method of simple-pca. In: Lovrek Ignac, Howlett Robert J, Jain Lakhmi C (eds) Knowledge-based intelligent information and engineering systems. Springer, Berlin, Heidelberg, pp 403–410
Ozawa S, Pang S, Kasabov N (2008) Adaptive face recognition system using fast incremental principal component analysis. In: Ishikawa Masumi, Doya Kenji, Miyamoto Hiroyuki, Yamakawa Takeshi (eds) Neural information processing, Berlin, Heidelberg, 2008. Springer, Berlin, Heidelberg, pp 396–405
Ozawa S, Toh SL, Abe S, Pang S, Kasabov N (2005) Incremental learning of feature space and classifier for face recognition. Neural Netw 18(5):575–584
Ozawa S, Toh SL, Abe S, Pang S, Kasabov N (2005) Incremental learning of feature space and classifier for face recognition. Neural Netw 18(5):575–584 IJCNN 2005
Pang S, Ban T, Kadobayashi Y, Kasabov N (2010) Incremental and decremental lda learning with applications. In: The 2010 international joint conference on neural networks (IJCNN), pp 1–8
Pang S, Ban T, Kadobayashi Y, Kasabov NK (2012) Lda merging and splitting with applications to multiagent cooperative learning and system alteration. IEEE Trans Syst Man Cybern B Cybern 42(2):552–564
Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW et al (2005) Overview of the face recognition grand challenge. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 1, pp 947–954
Prabhakar S, Pankanti S, Jain AK (2003) Biometric recognition: security and privacy concerns. IEEE Secur Priv 99(2):33–42
Raducanu B, Vitrià J (2008) Online nonparametric discriminant analysis for incremental subspace learning and recognition. Pattern Anal Appl 11(3):259–268
Ren CX, Dai DQ (2010) Incremental learning of bidirectional principal components for face recognition. Pattern Recognit 43(1):318–330
Sakai T (2008) Monte Carlo subspace method: an incremental approach to high-dimensional data classification. In: 2008 19th International conference on pattern recognition, pp 1–4
Shen F, Yu H, Sakurai K, Hasegawa O (2011) An incremental online semi-supervised active learning algorithm based on self-organizing incremental neural network. Neural Comput Appl 20(7):1061–1074
Shi W (2009) Efficient two dimensional principal component analysis for online learning. In: 2009 Asia-Pacific conference on computational intelligence and industrial applications (PACIIA), vol 2, pp 250–253
Shi W, Gong Y, Tao X, Wang J, Zheng N (2018) Improving cnn performance accuracies with min-max objective. IEEE Trans Neural Netw Learn Syst 29(7):2872–2885
Sim T, Baker S, Bsat M (2001) The cmu pose, illumination, and expression (pie) database of human faces. Technical Report CMU-RI-TR-01-02, Carnegie Mellon University, Pittsburgh, PA
Sisodia D, Shrivastava SK, Jain RC (2010) Isvm for face recognition. In: 2010 International conference on computational intelligence and communication networks, pp 554–559
Sisodia D, Singh L, Sisodia S (2013) Incremental learning algorithm for face recognition using dct. In: 2013 IEEE international conference on emerging trends in computing, communication and nanotechnology (ICECCN), pp 282–286
Soula A, Said SB, Ksantini R, Lachiri Z (2018) A novel incremental face recognition method based on nonparametric discriminant model. In: 2018 4th International conference on advanced technologies for signal and image processing (ATSIP), pp 1–6
Tan H, Chen H, Wang WH, Shi, JW (2009) Incremental tensor by face synthesis estimating for face recognition. In: 2009 International conference on machine learning and cybernetics, vol 6, pp 3129–3133
Tan C, Ji G (2016) A manifold learning algorithm based on incremental tangent space alignment. In: Sun Xingming, Liu Alex, Chao Han-Chieh, Bertino Elisa (eds) Cloud computing and security. Springer International Publishing, Cham, pp 541–552
Uci cmu face dataset. https://archive.ics.uci.edu/ml/machine-learning-databases/faces-mld/. Accessed 29 Jan 2019
Umist face dataset. https://www.sheffield.ac.uk/eee/research/iel/research/face. Accessed 29 Jan 2019
Wang JG, Sung E, Yau WY (2010) Incremental two-dimensional linear discriminant analysis with applications to face recognition. J Netw Comput Appl 33(3):314–322 Recent Advances and Future Directions in Biometrics Personal Identification
Weyrauch B, Heisele B, Huang J, Blanz V (2004) Component-based face recognition with 3d morphable models. In: IEEE computer vision and pattern recognition workshop, 2004. CVPRW’04. Conference on, pp 85–85
Wijaya IGPS, Uchimura K, Koutaki G (2011) Fast and robust face recognition for incremental data. In: Koch Reinhard, Huang Fay (eds) Computer vision—ACCV 2010 workshops. Springer, Berlin, Heidelberg, pp 414–423
Wijaya IGPS, Uchimura K, Koutaki G (2011) Human face security system using alternative linear discriminant analysis based classifier. In: 2011 17th Korea-Japan joint workshop on frontiers of computer vision (FCV), pp 1–6
Wong YW, Seng KP, Ang L (2011) Radial basis function neural network with incremental learning for face recognition. IEEE Trans Syst Man Cybern B Cybern 41(4):940–949
Xm2vts face dataset. http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/. Accessed 29 Jan 2019
Xiang-hai C (2010) Incremental principal component analysis based on reduced subspace projection. In: 2010 2nd International conference on advanced computer control, vol. 4, pp 602–605
Yan J, Lei Z, Yi D, Li SZ (2011) Towards incremental and large scale face recognition. In: 2011 International joint conference on biometrics (IJCB), pp 1–6
Ye J, Yang R (2015) An incremental src method for face recognition. In: Ho Yo-Sung, Sang Jitao, Ro Yong Man, Kim Junmo, Wu Fei (eds) Advances in multimedia information processing—PCM 2015. Springer International Publishing, Cham, pp 170–180
Yi D, Lei Z, Liao S, Li SZ (2014) Learning face representation from scratch. arXiv preprint. arXiv:1411.7923
Zhao H, Yuen PC (2008) Incremental linear discriminant analysis for face recognition. IEEE Trans Syst Man Cybern B Cybern 38(1):210–221
Zheng W, Tang X (2009) Fast algorithm for updating the discriminant vectors of dual-space lda. IEEE Trans Inf Forensics Secur 4(3):418–427
Zheng J, Yang D, Chen S, Wang W (2014) Incremental min-max projection analysis for classification. Neurocomputing 123:121–130 Contains Special issue articles: Advances in Pattern Recognition Applications and Methods
Zhu T, Shen F, Zhao J (2003) An incremental learning face recognition system for single sample per person. In: The 2013 international joint conference on neural networks (IJCNN), pp 1–6
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Madhavan, S., Kumar, N. Incremental methods in face recognition: a survey. Artif Intell Rev 54, 253–303 (2021). https://doi.org/10.1007/s10462-019-09734-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10462-019-09734-3